Skip to main content

New Drug Approvals 2013 - Pt. XIII - Dolutegravir (TivicayTM)




ATC code: J05AX12

On 12 August, the FDA approved a further drug for the treatment of HIV-1 infection, Dolutegravir (Tradename: Tivicay). Dolutegravir also known as S/GSK-1349575, is an HIV-1 integrase inhibitor. The drug has been approved for treatment of treatment-naïve as well as treatment-experienced HIV-infected adults including those who have been treated with other integrase inhibitors. In addition, Dolutegravir can be used for the treatment of children aged 12 years or older and weighing at least 40kg who have not been treated with integrase inhibitors, but are either treatment-naïve or treatment –experienced.

HIV, a lentivirus, infects vital cells in the human immune system such as helper T. cells (CD4+ T cells) and macrophages. The disease is responsible for millions of death every year, especially in Sub-Saharan Africa where treatment complications are enhanced by co-infection with tuberculosis and poverty. The approval of a new antiviral agent like Dolutegravir, will enhance treatment of the disease and improve the quality of people’s lives.

Dolutegravir is an inhibitor of HIV-1 integrase responsible for the insertion of the viral DNA into the host chromosomal DNA. The drug interferes with replication of HIV by preventing the viral DNA from assimilating into the genetic material of the human T cells. An example of a 3D structure of the enzyme’s core domain (PDBe: 3vqa) is shown below.


HIV-1 integrase (ChEMBLID: CHEMBL3471, UniProt Accession: Q72498)  is an attractive target for drug design. It is one of three enzymes of HIV (others are Reverse Transcriptase and the Protease) that consists of three main domains with specific functions. The N-terminal domain characterized by the His2Cys2 motif chelates zinc, the core domain consists of the catalytic DDE motif important for the activity of the enzyme, and the C-terminal domain, with an SH3-like fold, that binds DNA nonspecifically. There are a variety of crystal structures of the different domains of HIV-1 integrase reported in PDBe (Protein Data Bank in Europe)


Dolutegravir , ChEMBLID: CHEMBL1229211 (C20H19F2N3O5, IUPAC Name: (4R,12aS)-N-[(2,4-difluorophenyl)methyl]-7-hydroxy-4-methyl-6,8-dioxo-3,4,12,12a-tetrahydro-2H-pyrido[5,6]pyrazino[2,6-b][1,3]oxazine-9-carboxamide, Canonical smiles: CC1CCOC2N1C(=O)C3=C(C(=O)C(=CN3C2)C(=O)NCC4=C(C=C(C=C4)F)F)O) has two chiral centers, molecular weight of 419.12, 2 hydrogen bond donors, 6 hydrogen bond acceptors, 3 rotatable bonds, Polar surface area of 99.18 and alogP of 0.3. Dolutergravir is orally administered since it does not violate Lipinsik’s ‘Rule of Five’. The drug may be taken with or without food. For treatment-naïve or treatment-experienced with integrase transfer inhibitor (INSTI) – naïve adults and children the recommended dose is 50mg once. A dose of 50mg twice daily is recommended when dolutegravir is co-administered with potent UGT1A/CYP3A inducers like efavirenz, fosamprenavir/ritonavir, Tipranavir/ritonavir or rifampin.

The license holder for Dolutegravir is ViiV Healthcare, an HIV joint venture between GSK, Pfizer Inc and Shionogi. The full prescribing information can be found here.

Comments

Popular posts from this blog

Here's a nice Christmas gift - ChEMBL 35 is out!

Use your well-deserved Christmas holidays to spend time with your loved ones and explore the new release of ChEMBL 35!            This fresh release comes with a wealth of new data sets and some new data sources as well. Examples include a total of 14 datasets deposited by by the ASAP ( AI-driven Structure-enabled Antiviral Platform) project, a new NTD data se t by Aberystwyth University on anti-schistosome activity, nine new chemical probe data sets, and seven new data sets for the Chemogenomic library of the EUbOPEN project. We also inlcuded a few new fields that do impr ove the provenance and FAIRness of the data we host in ChEMBL:  1) A CONTACT field has been added to the DOCs table which should contain a contact profile of someone willing to be contacted about details of the dataset (ideally an ORCID ID; up to 3 contacts can be provided). 2) In an effort to provide more detailed information about the source of a deposited dat...

Improvements in SureChEMBL's chemistry search and adoption of RDKit

    Dear SureChEMBL users, If you frequently rely on our "chemistry search" feature, today brings great news! We’ve recently implemented a major update that makes your search experience faster than ever. What's New? Last week, we upgraded our structure search engine by aligning it with the core code base used in ChEMBL . This update allows SureChEMBL to leverage our FPSim2 Python package , returning results in approximately one second. The similarity search relies on 256-bit RDKit -calculated ECFP4 fingerprints, and a single instance requires approximately 1 GB of RAM to run. SureChEMBL’s FPSim2 file is not currently available for download, but we are considering generating it periodicaly and have created it once for you to try in Google Colab ! For substructure searches, we now also use an RDKit -based solution via SubstructLibrary , which returns results several times faster than our previous implementation. Additionally, structure search results are now sorted by...

ChEMBL 34 is out!

We are delighted to announce the release of ChEMBL 34, which includes a full update to drug and clinical candidate drug data. This version of the database, prepared on 28/03/2024 contains:         2,431,025 compounds (of which 2,409,270 have mol files)         3,106,257 compound records (non-unique compounds)         20,772,701 activities         1,644,390 assays         15,598 targets         89,892 documents Data can be downloaded from the ChEMBL FTP site:  https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_34/ Please see ChEMBL_34 release notes for full details of all changes in this release:  https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_34/chembl_34_release_notes.txt New Data Sources European Medicines Agency (src_id = 66): European Medicines Agency's data correspond to EMA drugs prior to 20 January 2023 (excluding ...

Improved querying for SureChEMBL

    Dear SureChEMBL users, Earlier this year we ran a survey to identify what you, the users, would like to see next in SureChEMBL. Thank you for offering your feedback! This gave us the opportunity to have some interesting discussions both internally and externally. While we can't publicly reveal precisely our plans for the coming months (everything will be delivered at the right time), we can at least say that improving the compound structure extraction quality is a priority. Unfortunately, the change won't happen overnight as reprocessing 167 millions patents takes a while. However, the good news is that the new generation of optical chemical structure recognition shows good performance, even for patent images! We hope we can share our results with you soon. So in the meantime, what are we doing? You may have noticed a few changes on the SureChEMBL main page. No more "Beta" flag since we consider the system to be stable enough (it does not mean that you will never ...

ChEMBL brings drug bioactivity data to the Protein Data Bank in Europe

In the quest to develop new drugs, understanding the 3D structure of molecules is crucial. Resources like the Protein Data Bank in Europe (PDBe) and the Cambridge Structural Database (CSD) provide these 3D blueprints for many biological molecules. However, researchers also need to know how these molecules interact with their biological target – their bioactivity. ChEMBL is a treasure trove of bioactivity data for countless drug-like molecules. It tells us how strongly a molecule binds to a target, how it affects a biological process, and even how it might be metabolized. But here's the catch: while ChEMBL provides extensive information on a molecule's activity and cross references to other data sources, it doesn't always tell us if a 3D structure is available for a specific drug-target complex. This can be a roadblock for researchers who need that structural information to design effective drugs. Therefore, connecting ChEMBL data with resources like PDBe and CSD is essen...