Skip to main content

New Drug Approvals 2013 - Pt. XV - Vortioxetine Hydrobromide (BrintellixTM)



ATC Code: N06AX26
Wikipedia: Vortioxetine

On September 30th 2013, FDA approved Vortioxetine (as the hydrobromide salt; tradename: Britellix; research code: Lu AA21004 (Lu AA21004 (HBR) for the hydrobromide salt); ChEMBL: CHEMBL2104993), a multimodal antidepressant indicated for the treatment of major depressive disorder (MDD).

MDD is a mental disorder characterised by low mood and/or loss of pleasure in most activities, and by symptoms or signs such as increased fatigue, change in appetite or weight, insomnia or excessive sleeping and suicide attempts or thoughts of suicide. MDD is believed to arise from low levels of neurotransmitters (primarily serotonin (5-HT), norepinepherine (NE) and dopamine(DA)) in the synaptic cleft between neurons in the brain. Several antidepressants for the treatment of MDD are already available in the market and its choice depends on which symptoms need to be tackled. The most important classes of antidepressants include the Selective Serotonin Reuptake Inhibitors (SSRIs) such as Fluoxetine (ChEMBL: CHEMBL41), Sertraline (ChEMBL: CHEMBL809), Paroxetine (ChEMBL: CHEMBL490), Fluvoxamine (ChEMBL: CHEMBL814) and Escitalopram (ChEMBL: CHEMBL1508), which are believed to maintain the levels of 5-HT high in the synapse; and the Serotonin-Norepinephrine Reuptake Inhibitors (SNRIs) such as Venlafaxine (ChEMBL: CHEMBL637), Duloxetine (ChEMBL: CHEMBL1175), Desvenlafaxine (ChEMBL: CHEMBL1118) and Milnacipran (ChEMBL: CHEMBL259209), which in turn are thought to maintain higher levels of 5-HT and NE in the synapse. Vortioxetine is a novel multimodal serotonergic compound, which displays antagonistic properties at serotonin receptors 5-HT3A (ChEMBL: CHEMBL1899; Ki=3.7nM) and 5-HT7 (ChEMBL: CHEMBL3155; Ki=19nM), partial agonist properties at 5-HT1B receptors (ChEMBL: CHEMBL1898; Ki=33nM), agonistic properties at 5-HT1A receptors (ChEMBL: CHEMBL214; Ki=15nM) and potent inhibition at the serotonin transporter (SERT) (ChEMBL: CHEMBL228; Ki=1.6nM). The contribution of these activities to the antidepressant action of Vortioxetine is not fully understood, however Vortioxetine is believed to be the first compound with this combination of pharmacodynamic activity.


Vortioxetine is a synthetic small molecule with a molecular weight of 298.5 g.mol-1 (379.4 g.mol-1 for the hydrobromide salt), an ALogP of 4.5, 3 hydrogen bond acceptors, 1 hydrogen bond donor, and therefore fully compliant with Lipinski's rule of five.
IUPAC: 1-[2-(2,4-Dimethyl-phenylsulfanyl)-phenyl]-piperazine, hydrobromide
Canonical Smiles: Cc1ccc(Sc2ccccc2N3CCNCC3)c(C)c1
InCHI: InChI=1S/C18H22N2S/c1-14-7-8-17(15(2)13-14)21-18-6-4-3-5-16(18)20-11-9-19-10-12-20/h3-8,13,19H,9-12H2,1-2H3

The recommended starting dose of Vortioxetine is 10 mg administrated orally once daily. The dose should then be increased to 20 mg/day, as tolerated. For patients who do not tolerate higher doses, a dose of 5 mg/day should be considered. Vortioxetine is 75% orally bioavailable, with an apparent volume of distribution of 2600L, a plasma protein binding of 98% and a terminal half-life of ca. 66 hours. Vortioxetine is extensively metabolised primarily through oxidation via cytrochrome P450 enzymes CYP2D6, CYP3A4/5, CYP2C19, CYP2C9, CYP2A6, CYP2C8 and CYP2B6 and subsequent glucuronic acid conjugation. CYP2D6 is the primary enzyme catalysing Vortioxetine to its major, pharmacologically inactive, carboxylic acid metabolite. Poor metabolisers of CYP2D6 have approximately twice the Vortioxetine plasma concentration of extensive metabolisers and therefore the maximum recommended dose in known CYP2D6 poor metabolisers is 10 mg/day. Vortioxetine is excreted in the urine (59%) and feces (26%) as metabolites, with a negligible amount of unchanged compound being excreted in the urine up to 48 hours.

The licensed holder of Vortioxetine is H. Lundbeck A/S and the full prescribing information can be found here.

Comments

Popular posts from this blog

Here's a nice Christmas gift - ChEMBL 35 is out!

Use your well-deserved Christmas holidays to spend time with your loved ones and explore the new release of ChEMBL 35!            This fresh release comes with a wealth of new data sets and some new data sources as well. Examples include a total of 14 datasets deposited by by the ASAP ( AI-driven Structure-enabled Antiviral Platform) project, a new NTD data se t by Aberystwyth University on anti-schistosome activity, nine new chemical probe data sets, and seven new data sets for the Chemogenomic library of the EUbOPEN project. We also inlcuded a few new fields that do impr ove the provenance and FAIRness of the data we host in ChEMBL:  1) A CONTACT field has been added to the DOCs table which should contain a contact profile of someone willing to be contacted about details of the dataset (ideally an ORCID ID; up to 3 contacts can be provided). 2) In an effort to provide more detailed information about the source of a deposited dat...

ChEMBL 34 is out!

We are delighted to announce the release of ChEMBL 34, which includes a full update to drug and clinical candidate drug data. This version of the database, prepared on 28/03/2024 contains:         2,431,025 compounds (of which 2,409,270 have mol files)         3,106,257 compound records (non-unique compounds)         20,772,701 activities         1,644,390 assays         15,598 targets         89,892 documents Data can be downloaded from the ChEMBL FTP site:  https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_34/ Please see ChEMBL_34 release notes for full details of all changes in this release:  https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_34/chembl_34_release_notes.txt New Data Sources European Medicines Agency (src_id = 66): European Medicines Agency's data correspond to EMA drugs prior to 20 January 2023 (excluding ...

Improvements in SureChEMBL's chemistry search and adoption of RDKit

    Dear SureChEMBL users, If you frequently rely on our "chemistry search" feature, today brings great news! We’ve recently implemented a major update that makes your search experience faster than ever. What's New? Last week, we upgraded our structure search engine by aligning it with the core code base used in ChEMBL . This update allows SureChEMBL to leverage our FPSim2 Python package , returning results in approximately one second. The similarity search relies on 256-bit RDKit -calculated ECFP4 fingerprints, and a single instance requires approximately 1 GB of RAM to run. SureChEMBL’s FPSim2 file is not currently available for download, but we are considering generating it periodicaly and have created it once for you to try in Google Colab ! For substructure searches, we now also use an RDKit -based solution via SubstructLibrary , which returns results several times faster than our previous implementation. Additionally, structure search results are now sorted by...

Improved querying for SureChEMBL

    Dear SureChEMBL users, Earlier this year we ran a survey to identify what you, the users, would like to see next in SureChEMBL. Thank you for offering your feedback! This gave us the opportunity to have some interesting discussions both internally and externally. While we can't publicly reveal precisely our plans for the coming months (everything will be delivered at the right time), we can at least say that improving the compound structure extraction quality is a priority. Unfortunately, the change won't happen overnight as reprocessing 167 millions patents takes a while. However, the good news is that the new generation of optical chemical structure recognition shows good performance, even for patent images! We hope we can share our results with you soon. So in the meantime, what are we doing? You may have noticed a few changes on the SureChEMBL main page. No more "Beta" flag since we consider the system to be stable enough (it does not mean that you will never ...

ChEMBL brings drug bioactivity data to the Protein Data Bank in Europe

In the quest to develop new drugs, understanding the 3D structure of molecules is crucial. Resources like the Protein Data Bank in Europe (PDBe) and the Cambridge Structural Database (CSD) provide these 3D blueprints for many biological molecules. However, researchers also need to know how these molecules interact with their biological target – their bioactivity. ChEMBL is a treasure trove of bioactivity data for countless drug-like molecules. It tells us how strongly a molecule binds to a target, how it affects a biological process, and even how it might be metabolized. But here's the catch: while ChEMBL provides extensive information on a molecule's activity and cross references to other data sources, it doesn't always tell us if a 3D structure is available for a specific drug-target complex. This can be a roadblock for researchers who need that structural information to design effective drugs. Therefore, connecting ChEMBL data with resources like PDBe and CSD is essen...