Skip to main content

Tastypie & Chempi



One of the immediate consequences of refactoring our webservices using Django, Tastypie and related approaches (as described here) is that we can run them on almost any database backend. Django abstracts communication with database and using custom QueryManagers we were able to implement chemisty-specific opererations, such as substructure and similarity search in a database agnostic manner.

This means, that if we want, we can use only Open Source components (such as Postgres and RDKit), or elect to use optimised commercially sourced software as appropriate. However, what if we go one step further and try to use Open Hardware as well? This is exactly what we've just done! We managed to install full ChEMBL 17 on raspbery pi.

Some frequently asked questions (at lease those that have been asked internally) and technical details are below:

1. How much space does it take?

12 Gb, including OS, data and all relevant software. Unfortunately we a used 32 Gb SD card so this is size if you would like to use our cloned disk image.

EDIT: Compressed image takes 4.13 Gb.

2. What OS is it running?

Raspbian, free operating system based on Debian.

3. Is it slow?

We haven't make any benchmarks yet. Obviously it's slower than our online web services - but then it's a lot cheaper. On the other hand, performing some sample requests we can say that performance is certainly acceptable; and there is a lot room for improvements - raspberry pis can be easily overclocked from 700 MHz to 1GHz and according to some benchmarks this can give rise to doubling of application speed in some cases. The SD card we used is not the fastest one as well. Finally, all caching is disabled because we wanted to save disk space but using database caching from Django caching framework should give further major improvements - so maybe use the 32 Gb image after all.

Types of request that chempi can be slower on are:

 - Image generation, but if we replace image with JSON from which image can be generated using HTML5 canvas on the client side (the way we generated images in our game) it can be much faster. More about this topic in future blog post.
- Queries using aggregate functions such as COUNT (it seems that we need to optimise our postgres db by adding some more indexes).
- Substructure and similarity search - again, caching, over-clocking and some database and cartridge (choosing faster fingerprints) optimization should solve all the problems. "Premature optimization is a root of all evil", so we first wanted to have a proof of concept that just works, not necessarily works super fast.

4. Can I make my own chempi?

Yes, we are planning to share our SD card image, we will probably use BitTorrent protocol to do this due to image size, and some issues we have faced with distribution of the myChEMBL. We do remember that not everyone has mega-fast broadband!

5. Is chempi useful at all?

Although we think it is interesting as a proof of concept having chemical database on such small and open source hardware, we do think this may have some interesting future real-world applications:

 - plugging our chempi to local network makes it immediately accessible to other computers. So this is a zero configuration demonstration of ChEMBL.
- analogically to the thesis included in this paper, it can encourage cheminformatics education on low cost ARM hardware.
- raspberry can be easily enhanced with camera to perform image recognition. This, combined with software like OSRA can give ability so scan compound images and search them in database.
- adding some e-ink display (for example, jailbroken Kindle?) can produce very interesting small machine...

6. What are some of the technical details?

To deploy our webservices (which are just another Django application) we've used Gunicorn as a server, which in turn connects to NGINX via standard unix pipe. To make it work as a deamon and launch on machine startup, we've used Supervisor. We believe this is ideal way to deploy Django not only on raspberry but on all production machines to if you like to run chembl webservices locally in your company/academia we suggest to do it this way.


michal

Comments

Popular posts from this blog

Here's a nice Christmas gift - ChEMBL 35 is out!

Use your well-deserved Christmas holidays to spend time with your loved ones and explore the new release of ChEMBL 35!            This fresh release comes with a wealth of new data sets and some new data sources as well. Examples include a total of 14 datasets deposited by by the ASAP ( AI-driven Structure-enabled Antiviral Platform) project, a new NTD data se t by Aberystwyth University on anti-schistosome activity, nine new chemical probe data sets, and seven new data sets for the Chemogenomic library of the EUbOPEN project. We also inlcuded a few new fields that do impr ove the provenance and FAIRness of the data we host in ChEMBL:  1) A CONTACT field has been added to the DOCs table which should contain a contact profile of someone willing to be contacted about details of the dataset (ideally an ORCID ID; up to 3 contacts can be provided). 2) In an effort to provide more detailed information about the source of a deposited dat...

ChEMBL 34 is out!

We are delighted to announce the release of ChEMBL 34, which includes a full update to drug and clinical candidate drug data. This version of the database, prepared on 28/03/2024 contains:         2,431,025 compounds (of which 2,409,270 have mol files)         3,106,257 compound records (non-unique compounds)         20,772,701 activities         1,644,390 assays         15,598 targets         89,892 documents Data can be downloaded from the ChEMBL FTP site:  https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_34/ Please see ChEMBL_34 release notes for full details of all changes in this release:  https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_34/chembl_34_release_notes.txt New Data Sources European Medicines Agency (src_id = 66): European Medicines Agency's data correspond to EMA drugs prior to 20 January 2023 (excluding ...

Improvements in SureChEMBL's chemistry search and adoption of RDKit

    Dear SureChEMBL users, If you frequently rely on our "chemistry search" feature, today brings great news! We’ve recently implemented a major update that makes your search experience faster than ever. What's New? Last week, we upgraded our structure search engine by aligning it with the core code base used in ChEMBL . This update allows SureChEMBL to leverage our FPSim2 Python package , returning results in approximately one second. The similarity search relies on 256-bit RDKit -calculated ECFP4 fingerprints, and a single instance requires approximately 1 GB of RAM to run. SureChEMBL’s FPSim2 file is not currently available for download, but we are considering generating it periodicaly and have created it once for you to try in Google Colab ! For substructure searches, we now also use an RDKit -based solution via SubstructLibrary , which returns results several times faster than our previous implementation. Additionally, structure search results are now sorted by...

Improved querying for SureChEMBL

    Dear SureChEMBL users, Earlier this year we ran a survey to identify what you, the users, would like to see next in SureChEMBL. Thank you for offering your feedback! This gave us the opportunity to have some interesting discussions both internally and externally. While we can't publicly reveal precisely our plans for the coming months (everything will be delivered at the right time), we can at least say that improving the compound structure extraction quality is a priority. Unfortunately, the change won't happen overnight as reprocessing 167 millions patents takes a while. However, the good news is that the new generation of optical chemical structure recognition shows good performance, even for patent images! We hope we can share our results with you soon. So in the meantime, what are we doing? You may have noticed a few changes on the SureChEMBL main page. No more "Beta" flag since we consider the system to be stable enough (it does not mean that you will never ...

ChEMBL brings drug bioactivity data to the Protein Data Bank in Europe

In the quest to develop new drugs, understanding the 3D structure of molecules is crucial. Resources like the Protein Data Bank in Europe (PDBe) and the Cambridge Structural Database (CSD) provide these 3D blueprints for many biological molecules. However, researchers also need to know how these molecules interact with their biological target – their bioactivity. ChEMBL is a treasure trove of bioactivity data for countless drug-like molecules. It tells us how strongly a molecule binds to a target, how it affects a biological process, and even how it might be metabolized. But here's the catch: while ChEMBL provides extensive information on a molecule's activity and cross references to other data sources, it doesn't always tell us if a 3D structure is available for a specific drug-target complex. This can be a roadblock for researchers who need that structural information to design effective drugs. Therefore, connecting ChEMBL data with resources like PDBe and CSD is essen...