Skip to main content

New Drug Approvals 2014 - Pt. II - Tasimelteon (HetliozTM)



ATC Code: N05CH
Wikipedia: Tasimelteon

On January 31st 2014, the FDA approved Tasimelteon (Tradename: Hetlioz; Research Code(s): VEC-162, BMS-214778), a melatonin receptor agonist, for the treatment of Non-24-hour sleep-wake disorder (Non-24).

Non-24-hour sleep–wake disorder (Non-24) is a chronic circadian rhythm sleep disorder, mostly affecting blind people. It is characterised by insomnia or excessive sleepiness related to abnormal synchronization between the 24-hour light–dark cycle and the endogenous circadian cycle (slightly longer than 24 hours). This deviation can be corrected by exposure to solar light, which resets the internal clock, however, the loss of photic input, and the absence of light perception in the majority of patients, prevents them from drifting back into normal alignment.

Tasimelteon is an agonist at melatonin MT1 and MT2 receptors, with a relative greater affinity for MT2. These receptors are thought to be involved in the control of circadian rhythms, consequently, the binding of tasimelteon to these receptors, and the resulting induced somnolence, is believed to be the mechanism by which tasimelteon aids in the synchronisation of the internal circadian clock with the 24-hour light–dark cycle.

Melatonin receptors (Uniprot accession: P48039 and P49286; ChEMBL ID: CHEMBL2094268) are members of the G-protein coupled receptor 1 family. There are no known 3D structures for these particular proteins though, however there are now several relevant homologous structures of other members of the family (see here for a current list of representative rhodopsin-like GPCR structures).

The -melteon USAN/INN stem covers selective melatonin receptor agonists. Tasimelteon is the second approved agent in this class, following the approval of Takeda's Ramelteon in 2005. Contrary to its predecessor, tasimelteon is not currently indicated to treat insomnia, and has received orphan-product designation by the FDA. Agomelatine is another member of this class, but only approved in Europe (PMID: 18673165).


Tasimelteon (IUPAC Name: N-[[(1R,2R)-2-(2,3-dihydro-1-benzofuran-4-yl)cyclopropyl]methyl]propanamide; Canonical smiles: CCC(=O)NC[C@@H]1C[C@H]1c2cccc3OCCc23; ChEMBL: CHEMBL2103822; PubChem: 10220503; ChemSpider: 8395995; Standard InChI Key: PTOIAAWZLUQTIO-GXFFZTMASA-N) is a synthetic small molecule , with a molecular weight of 245.3 Da, 2 hydrogen bond acceptors, 1 hydrogen bond donor, and has an ALogP of 2.2. The compound is therefore fully compliant with the rule of five.

Tasimelteon is available as oral capsules and the recommended daily dose is one single capsule of 20 mg, taken before bedtime, at the same time every night. The peak concentration (Cmax) is reached at 0.5 to 3 hours after fasted oral administration, and at steady-state in young healthy subjects, the apparent oral volume of distribution (Vd/F) is approximately 56-126 L. Tasimelteon should not be administered with food, since food decreases its bioavailability, lowering the Cmax by 44%, and delaying the Tmax by approximately 1.75 hours. At therapeutic concentrations, tasimelteon is strongly bound to plasma proteins (90%).

The primary enzymatic systems involved in the biotransformation of tasimelteon in the liver are CYP1A2 and CYP3A4. Therefore, co-administration of tasimelteon with inhibitors of CYP1A2 and CYP3A4 or inducers of CYP3A4 may significantly alter the plasma concentration of tasimelteon. Metabolism of tasimelteon consists primarily of oxidation at multiple sites and oxidative dealkylation resulting in opening of the dihydrofuran ring followed by further oxidation to give a carboxylic acid. Phenolic glucuronidation is the major phase II metabolic route. Following oral administration of radiolabeled tasimelteon, 80% of total radioactivity is excreted in urine and approximately 4% in feces. The mean elimination half-life (t1/2) for tasimelteon is 1.3 ± 0.4 hours.

The license holder for HetliozTM is Vanda Pharmaceuticals, and the full prescribing information can be found here.

Comments

Popular posts from this blog

ChEMBL 34 is out!

We are delighted to announce the release of ChEMBL 34, which includes a full update to drug and clinical candidate drug data. This version of the database, prepared on 28/03/2024 contains:         2,431,025 compounds (of which 2,409,270 have mol files)         3,106,257 compound records (non-unique compounds)         20,772,701 activities         1,644,390 assays         15,598 targets         89,892 documents Data can be downloaded from the ChEMBL FTP site:  https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_34/ Please see ChEMBL_34 release notes for full details of all changes in this release:  https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_34/chembl_34_release_notes.txt New Data Sources European Medicines Agency (src_id = 66): European Medicines Agency's data correspond to EMA drugs prior to 20 January 2023 (excluding ...

SureChEMBL gets a facelift

    Dear SureChEMBL users, Over the past year, we’ve introduced several updates to the SureChEMBL platform, focusing on improving functionality while maintaining a clean and intuitive design. Even small changes can have a big impact on your experience, and our goal remains the same: to provide high-quality patent annotation with a simple, effective way to find the data you need. What’s Changed? After careful consideration, we’ve redesigned the landing page to make your navigation smoother and more intuitive. From top to bottom: - Announcements Section: Stay up to date with the latest news and updates directly from this blog. Never miss any update! - Enhanced Search Bar: The main search bar is still your go-to for text searches, still with three pre-filter radio buttons to quickly narrow your results without hassle. - Improved Query Assistant: Our query assistant has been redesigned and upgraded to help you craft more precise queries. It now includes five operator options: E...

Improvements in SureChEMBL's chemistry search and adoption of RDKit

    Dear SureChEMBL users, If you frequently rely on our "chemistry search" feature, today brings great news! We’ve recently implemented a major update that makes your search experience faster than ever. What's New? Last week, we upgraded our structure search engine by aligning it with the core code base used in ChEMBL . This update allows SureChEMBL to leverage our FPSim2 Python package , returning results in approximately one second. The similarity search relies on 256-bit RDKit -calculated ECFP4 fingerprints, and a single instance requires approximately 1 GB of RAM to run. SureChEMBL’s FPSim2 file is not currently available for download, but we are considering generating it periodicaly and have created it once for you to try in Google Colab ! For substructure searches, we now also use an RDKit -based solution via SubstructLibrary , which returns results several times faster than our previous implementation. Additionally, structure search results are now sorted by...

Here's a nice Christmas gift - ChEMBL 35 is out!

Use your well-deserved Christmas holidays to spend time with your loved ones and explore the new release of ChEMBL 35!            This fresh release comes with a wealth of new data sets and some new data sources as well. Examples include a total of 14 datasets deposited by by the ASAP ( AI-driven Structure-enabled Antiviral Platform) project, a new NTD data se t by Aberystwyth University on anti-schistosome activity, nine new chemical probe data sets, and seven new data sets for the Chemogenomic library of the EUbOPEN project. We also inlcuded a few new fields that do impr ove the provenance and FAIRness of the data we host in ChEMBL:  1) A CONTACT field has been added to the DOCs table which should contain a contact profile of someone willing to be contacted about details of the dataset (ideally an ORCID ID; up to 3 contacts can be provided). 2) In an effort to provide more detailed information about the source of a deposited dat...

A python client for accessing ChEMBL web services

Motivation The CheMBL Web Services provide simple reliable programmatic access to the data stored in ChEMBL database. RESTful API approaches are quite easy to master in most languages but still require writing a few lines of code. Additionally, it can be a challenging task to write a nontrivial application using REST without any examples. These factors were the motivation for us to write a small client library for accessing web services from Python. Why Python? We choose this language because Python has become extremely popular (and still growing in use) in scientific applications; there are several Open Source chemical toolkits available in this language, and so the wealth of ChEMBL resources and functionality of those toolkits can be easily combined. Moreover, Python is a very web-friendly language and we wanted to show how easy complex resource acquisition can be expressed in Python. Reinventing the wheel? There are already some libraries providing access to ChEM...