Skip to main content

New Drug Approvals 2014 - Pt. III - Droxidopa (Northera ™)



ATC Code: Unavailable
Wikipedia: Droxidopa
ChEMBL: CHEMBL2103827

On February 18th the FDA approved Droxidopa (tarde name Northera™) for the treatment of neurogenic orthostatic hypotension (NOH). NOH is a rare, chronic and often debilitating drop in blood pressure upon standing, and is associated with Parkinson's disease, multiple-system atrophy, and pure autonomic failure. Symptoms of NOH include dizziness, light-headedness, blurred vision, fatigue and fainting when a person stands. 

Target(s)
Droxidopa (also known as L-DOPS, L-threo-dihydroxyphenylserine, and SM-5688) is a prodrug which can be converted to norepinephrine (noradrenaline) by Aromatic L-amino acid decarboxylase (Uniprot P20711 ; EC 4.1.1.28). Norepinephrine in turn can be converted to epinephrine by Phenylethanolamine N-methyltransferase ( Uniprot P11086 ). Droxidopa can cross the blood brain barrier, contrary to epinephrine and norepinephrine.  Patients with NOH suffer from depleted levels of epinephrine and norepinephrine. Droxidopa increases the levels of both in the peripheral nervous system and leads to an increased heart rate and blood pressure.



Droxidopa (CHEMBL2103827Pubchem : 92974 ) is a small molecule drug with a molecular weight of 213.2 Da, an AlogP of -2.92, 3 rotatable bonds, and no rule of 5 violations.

Canonical SMILES : N[C@@H]([C@H](O)c1ccc(O)c(O)c1)C(=O)O
InChi: InChI=1S/C9H11NO5/c10-7(9(14)15)8(13)4-1-2-5(11)6(12)3-4/h1-3,7-8,11-13H,10H2,(H,14,15)/t7-,8+/m0/s1


Dosage
Droxidopa starting dose is 100mg three times daily (which can be titrated to a maximum of 600 mg three times daily). One dose should be taken in late afternoon at least 3 hours prior to bedtime to reduce the potential for supine hypertension during sleep.

Warnings
Neuroleptic malignant syndrome (NMS) has been reported with Droxidopa use during post-marketing surveillance in Japan. NMS is an uncommon but life-threatening syndrome characterized by fever or hyperthermia, muscle rigidity, involuntary movements, altered consciousness, and mental status changes.

Ischemic Heart Disease, Arrhythmias, and Congestive Heart Failure
Droxidopa may exacerbate existing ischemic heart disease, arrhythmias and congestive heart failure.

Pharmacokinetics
Absorption
Cmax of droxidopa were reached by 1 - 4 hours post-dose in healthy volunteers. High-fat meals have a moderate impact on droxidopa exposure with Cmax and AUC decreasing by 35% and 20% respectively, and delaying Cmax by approximately 2 hours.

Distribution
Droxidopa exhibits plasma protein binding of 75% at 100 ng/mL and 26% at 10,000 ng/mL with an apparent volume of distribution of about 200 L.

Metabolism
The metabolism of droxidopa is mediated by catecholamine pathway and not through the cytochrome P450 system. Plasma norepinephrine levels peak within 3 to 4 hours (generally < 1 ng/mL) and variable with no consistent relationship with dose. The contribution of the metabolites of droxidopa other than norepinephrine to its pharmacological effects is not well understood.

Elimination
The mean elimination half-life of droxidopa is 2.5 hours. The major route of elimination of droxidopa and its metabolites is via the kidneys.

Drug Interactions 
No dedicated drug-drug interaction studies were performed for droxidopa. Carbidopa, a peripheral dopa-decarboxylase inhibitor, could prevent the conversion of droxidopa to norepinephrine outside of the central nervous system (CNS).

L-DOPA/dopa-decarboxylase inhibitor combination drugs decreased clearance of droxidopa, increased AUC to droxidopa approximately 100%, and increased exposure to 3-OM-DOPS of approximately 50%. However, it was found that the decreased clearance was not associated with a significant need for a different treatment dose or increases in associated adverse events.

Dopamine agonists, amantadine derivatives, and MAO-B inhibitors do not appear to effect droxidopa clearance, no dose adjustments are required. 

Pregnancy
Droxidopa is classified as pregnancy category C. There are no adequate and well controlled trials in pregnant women.

The license holder is Chelsea Therapeutics, the prescribing information can be found here.

Comments

Popular posts from this blog

ChEMBL 34 is out!

We are delighted to announce the release of ChEMBL 34, which includes a full update to drug and clinical candidate drug data. This version of the database, prepared on 28/03/2024 contains:         2,431,025 compounds (of which 2,409,270 have mol files)         3,106,257 compound records (non-unique compounds)         20,772,701 activities         1,644,390 assays         15,598 targets         89,892 documents Data can be downloaded from the ChEMBL FTP site:  https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_34/ Please see ChEMBL_34 release notes for full details of all changes in this release:  https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_34/chembl_34_release_notes.txt New Data Sources European Medicines Agency (src_id = 66): European Medicines Agency's data correspond to EMA drugs prior to 20 January 2023 (excluding ...

SureChEMBL gets a facelift

    Dear SureChEMBL users, Over the past year, we’ve introduced several updates to the SureChEMBL platform, focusing on improving functionality while maintaining a clean and intuitive design. Even small changes can have a big impact on your experience, and our goal remains the same: to provide high-quality patent annotation with a simple, effective way to find the data you need. What’s Changed? After careful consideration, we’ve redesigned the landing page to make your navigation smoother and more intuitive. From top to bottom: - Announcements Section: Stay up to date with the latest news and updates directly from this blog. Never miss any update! - Enhanced Search Bar: The main search bar is still your go-to for text searches, still with three pre-filter radio buttons to quickly narrow your results without hassle. - Improved Query Assistant: Our query assistant has been redesigned and upgraded to help you craft more precise queries. It now includes five operator options: E...

Improvements in SureChEMBL's chemistry search and adoption of RDKit

    Dear SureChEMBL users, If you frequently rely on our "chemistry search" feature, today brings great news! We’ve recently implemented a major update that makes your search experience faster than ever. What's New? Last week, we upgraded our structure search engine by aligning it with the core code base used in ChEMBL . This update allows SureChEMBL to leverage our FPSim2 Python package , returning results in approximately one second. The similarity search relies on 256-bit RDKit -calculated ECFP4 fingerprints, and a single instance requires approximately 1 GB of RAM to run. SureChEMBL’s FPSim2 file is not currently available for download, but we are considering generating it periodicaly and have created it once for you to try in Google Colab ! For substructure searches, we now also use an RDKit -based solution via SubstructLibrary , which returns results several times faster than our previous implementation. Additionally, structure search results are now sorted by...

Here's a nice Christmas gift - ChEMBL 35 is out!

Use your well-deserved Christmas holidays to spend time with your loved ones and explore the new release of ChEMBL 35!            This fresh release comes with a wealth of new data sets and some new data sources as well. Examples include a total of 14 datasets deposited by by the ASAP ( AI-driven Structure-enabled Antiviral Platform) project, a new NTD data se t by Aberystwyth University on anti-schistosome activity, nine new chemical probe data sets, and seven new data sets for the Chemogenomic library of the EUbOPEN project. We also inlcuded a few new fields that do impr ove the provenance and FAIRness of the data we host in ChEMBL:  1) A CONTACT field has been added to the DOCs table which should contain a contact profile of someone willing to be contacted about details of the dataset (ideally an ORCID ID; up to 3 contacts can be provided). 2) In an effort to provide more detailed information about the source of a deposited dat...

A python client for accessing ChEMBL web services

Motivation The CheMBL Web Services provide simple reliable programmatic access to the data stored in ChEMBL database. RESTful API approaches are quite easy to master in most languages but still require writing a few lines of code. Additionally, it can be a challenging task to write a nontrivial application using REST without any examples. These factors were the motivation for us to write a small client library for accessing web services from Python. Why Python? We choose this language because Python has become extremely popular (and still growing in use) in scientific applications; there are several Open Source chemical toolkits available in this language, and so the wealth of ChEMBL resources and functionality of those toolkits can be easily combined. Moreover, Python is a very web-friendly language and we wanted to show how easy complex resource acquisition can be expressed in Python. Reinventing the wheel? There are already some libraries providing access to ChEM...