Skip to main content

Drug safety information: Boxed warnings and Withdrawn drugs

Updated drug safety information is available (as of ChEMBL 28) for drugs with boxed warnings and for withdrawn drugs. 

Boxed warnings (also know as black box warnings) are provided on medicinal product labels for FDA approved drugs if the medicinal product can cause severe or life-threatening side effects. They are free text descriptions, enclosed within a black box, hence the name! For example, Oxaprozin is used to treat osteoarthritis but carries a boxed warning.

Our recent work has classified the type of adverse effect described in boxed warnings on a per drug basis. For medicinal products that contain one active pharmaceutical ingredient, a boxed warning can be directly linked to a drug. Therefore, toxicity class(es) have been assigned to approved drugs with boxed warning information described on medicinal product labels (e.g. Cardiotoxicity, Hepatotoxicity etc). Clickable links to examples of medicinal product labels with boxed warning text descriptions have been retained to allow database users to drill down through the information “audit trail” to examine the source information. Further details are available from Hunter et al., 2021

As part of this effort, source references for previously curated withdrawn drugs have also been publicly exposed, ie drugs that have been approved but subsequently withdrawn from one or more markets of the world for safety reasons. See our blog on Withdrawn Drugs.

All safety information can be accessed in the ChEMBL web interface via the Drugs view (which is grouped by parent compound) or via the Compound view (for either view, filter on the left hand side by 'withdrawn flag' or 'black box warning'). For an individual drug, detailed drug warning information and source references are available on the Compound Report Card, e.g. Tolcapone, CHEMBL1324, is approved to treat Parkinson's Disease but carries a warning of Hepatotoxicity:
  





Programatic access is also available via our new Drug_Warning API endpoint, e.g. a search for hepatotoxic drugs (either withdrawn or those with a boxed warning) could apply this syntax: 
https://www.ebi.ac.uk/chembl/api/data/drug_warning.json?warning_class=Hepatotoxicity

The drug safety information allows drugs that cause similarly reported toxicities to be easily grouped, analyzed, and visualized. The ChEMBL resource contains a wide range of bioactivity data types, from early “Discovery” stage preclinical data for individual compounds through to postclinical data on marketed drugs; the inclusion of the drug safety information within this framework can support a wide range of safety-related drug discovery questions. The drug safety information will be updated in future database releases. 

This work has received funding from the Innovative Medicines Initiative 2 Joint Undertaking under grant agreement No 116030. This Joint Undertaking receives support from the European Union’s Horizon 2020 research and innovation programme and EFPIA. 




Comments

Popular posts from this blog

Improvements in SureChEMBL's chemistry search and adoption of RDKit

    Dear SureChEMBL users, If you frequently rely on our "chemistry search" feature, today brings great news! We’ve recently implemented a major update that makes your search experience faster than ever. What's New? Last week, we upgraded our structure search engine by aligning it with the core code base used in ChEMBL . This update allows SureChEMBL to leverage our FPSim2 Python package , returning results in approximately one second. The similarity search relies on 256-bit RDKit -calculated ECFP4 fingerprints, and a single instance requires approximately 1 GB of RAM to run. SureChEMBL’s FPSim2 file is not currently available for download, but we are considering generating it periodicaly and have created it once for you to try in Google Colab ! For substructure searches, we now also use an RDKit -based solution via SubstructLibrary , which returns results several times faster than our previous implementation. Additionally, structure search results are now sorted by

ChEMBL brings drug bioactivity data to the Protein Data Bank in Europe

In the quest to develop new drugs, understanding the 3D structure of molecules is crucial. Resources like the Protein Data Bank in Europe (PDBe) and the Cambridge Structural Database (CSD) provide these 3D blueprints for many biological molecules. However, researchers also need to know how these molecules interact with their biological target – their bioactivity. ChEMBL is a treasure trove of bioactivity data for countless drug-like molecules. It tells us how strongly a molecule binds to a target, how it affects a biological process, and even how it might be metabolized. But here's the catch: while ChEMBL provides extensive information on a molecule's activity and cross references to other data sources, it doesn't always tell us if a 3D structure is available for a specific drug-target complex. This can be a roadblock for researchers who need that structural information to design effective drugs. Therefore, connecting ChEMBL data with resources like PDBe and CSD is essen

Improved querying for SureChEMBL

    Dear SureChEMBL users, Earlier this year we ran a survey to identify what you, the users, would like to see next in SureChEMBL. Thank you for offering your feedback! This gave us the opportunity to have some interesting discussions both internally and externally. While we can't publicly reveal precisely our plans for the coming months (everything will be delivered at the right time), we can at least say that improving the compound structure extraction quality is a priority. Unfortunately, the change won't happen overnight as reprocessing 167 millions patents takes a while. However, the good news is that the new generation of optical chemical structure recognition shows good performance, even for patent images! We hope we can share our results with you soon. So in the meantime, what are we doing? You may have noticed a few changes on the SureChEMBL main page. No more "Beta" flag since we consider the system to be stable enough (it does not mean that you will never

ChEMBL 34 is out!

We are delighted to announce the release of ChEMBL 34, which includes a full update to drug and clinical candidate drug data. This version of the database, prepared on 28/03/2024 contains:         2,431,025 compounds (of which 2,409,270 have mol files)         3,106,257 compound records (non-unique compounds)         20,772,701 activities         1,644,390 assays         15,598 targets         89,892 documents Data can be downloaded from the ChEMBL FTP site:  https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_34/ Please see ChEMBL_34 release notes for full details of all changes in this release:  https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_34/chembl_34_release_notes.txt New Data Sources European Medicines Agency (src_id = 66): European Medicines Agency's data correspond to EMA drugs prior to 20 January 2023 (excluding vaccines). 71 out of the 882 newly added EMA drugs are only authorised by EMA, rather than from other regulatory bodies e.g.

A python client for accessing ChEMBL web services

Motivation The CheMBL Web Services provide simple reliable programmatic access to the data stored in ChEMBL database. RESTful API approaches are quite easy to master in most languages but still require writing a few lines of code. Additionally, it can be a challenging task to write a nontrivial application using REST without any examples. These factors were the motivation for us to write a small client library for accessing web services from Python. Why Python? We choose this language because Python has become extremely popular (and still growing in use) in scientific applications; there are several Open Source chemical toolkits available in this language, and so the wealth of ChEMBL resources and functionality of those toolkits can be easily combined. Moreover, Python is a very web-friendly language and we wanted to show how easy complex resource acquisition can be expressed in Python. Reinventing the wheel? There are already some libraries providing access to ChEMBL d