Skip to main content

Drug safety information: Boxed warnings and Withdrawn drugs

Updated drug safety information is available (as of ChEMBL 28) for drugs with boxed warnings and for withdrawn drugs. 

Boxed warnings (also know as black box warnings) are provided on medicinal product labels for FDA approved drugs if the medicinal product can cause severe or life-threatening side effects. They are free text descriptions, enclosed within a black box, hence the name! For example, Oxaprozin is used to treat osteoarthritis but carries a boxed warning.

Our recent work has classified the type of adverse effect described in boxed warnings on a per drug basis. For medicinal products that contain one active pharmaceutical ingredient, a boxed warning can be directly linked to a drug. Therefore, toxicity class(es) have been assigned to approved drugs with boxed warning information described on medicinal product labels (e.g. Cardiotoxicity, Hepatotoxicity etc). Clickable links to examples of medicinal product labels with boxed warning text descriptions have been retained to allow database users to drill down through the information “audit trail” to examine the source information. Further details are available from Hunter et al., 2021

As part of this effort, source references for previously curated withdrawn drugs have also been publicly exposed, ie drugs that have been approved but subsequently withdrawn from one or more markets of the world for safety reasons. See our blog on Withdrawn Drugs.

All safety information can be accessed in the ChEMBL web interface via the Drugs view (which is grouped by parent compound) or via the Compound view (for either view, filter on the left hand side by 'withdrawn flag' or 'black box warning'). For an individual drug, detailed drug warning information and source references are available on the Compound Report Card, e.g. Tolcapone, CHEMBL1324, is approved to treat Parkinson's Disease but carries a warning of Hepatotoxicity:
  





Programatic access is also available via our new Drug_Warning API endpoint, e.g. a search for hepatotoxic drugs (either withdrawn or those with a boxed warning) could apply this syntax: 
https://www.ebi.ac.uk/chembl/api/data/drug_warning.json?warning_class=Hepatotoxicity

The drug safety information allows drugs that cause similarly reported toxicities to be easily grouped, analyzed, and visualized. The ChEMBL resource contains a wide range of bioactivity data types, from early “Discovery” stage preclinical data for individual compounds through to postclinical data on marketed drugs; the inclusion of the drug safety information within this framework can support a wide range of safety-related drug discovery questions. The drug safety information will be updated in future database releases. 

This work has received funding from the Innovative Medicines Initiative 2 Joint Undertaking under grant agreement No 116030. This Joint Undertaking receives support from the European Union’s Horizon 2020 research and innovation programme and EFPIA. 




Comments

Popular posts from this blog

Using ChEMBL web services via proxy.

It is common practice for organizations and companies to make use of proxy servers to connect to services outside their network. This can cause problems for users of the ChEMBL web services who sit behind a proxy server. So to help those users who have asked, we provide the following quick guide, which demonstrates how to access ChEMBL web services via a proxy. Most software libraries respect proxy settings from environmental variables. You can set the proxy variable once, normally HTTP_PROXY and then use that variable to set other related proxy environment variables: Or if you have different proxies responsible for different protocols: On Windows, this would be: If you are accessing the ChEMBL web services programmatically and you prefer not to clutter your environment, you can consider adding the proxy settings to your scripts. Here are some python based recipes: 1. Official ChEMBL client library If you are working in a python based environment, we recommend

Multi-task neural network on ChEMBL with PyTorch 1.0 and RDKit

  The use and application of multi-task neural networks is growing rapidly in cheminformatics and drug discovery. Examples can be found in the following publications: - Deep Learning as an Opportunity in VirtualScreening - Massively Multitask Networks for Drug Discovery - Beyond the hype: deep neural networks outperform established methods using a ChEMBL bioactivity benchmark set But what is a multi-task neural network? In short, it's a kind of neural network architecture that can optimise multiple classification/regression problems at the same time while taking advantage of their shared description. This blogpost gives a great overview of their architecture. All networks in references above implement the hard parameter sharing approach. So, having a set of activities relating targets and molecules we can train a single neural network as a binary multi-label classifier that will output the probability of activity/inactivity for each of the targets (tasks) for a given q

A python client for accessing ChEMBL web services

Motivation The CheMBL Web Services provide simple reliable programmatic access to the data stored in ChEMBL database. RESTful API approaches are quite easy to master in most languages but still require writing a few lines of code. Additionally, it can be a challenging task to write a nontrivial application using REST without any examples. These factors were the motivation for us to write a small client library for accessing web services from Python. Why Python? We choose this language because Python has become extremely popular (and still growing in use) in scientific applications; there are several Open Source chemical toolkits available in this language, and so the wealth of ChEMBL resources and functionality of those toolkits can be easily combined. Moreover, Python is a very web-friendly language and we wanted to show how easy complex resource acquisition can be expressed in Python. Reinventing the wheel? There are already some libraries providing access to ChEMBL d

LSH-based similarity search in MongoDB is faster than postgres cartridge.

TL;DR: In his excellent blog post , Matt Swain described the implementation of compound similarity searches in MongoDB . Unfortunately, Matt's approach had suboptimal ( polynomial ) time complexity with respect to decreasing similarity thresholds, which renders unsuitable for production environments. In this article, we improve on the method by enhancing it with Locality Sensitive Hashing algorithm, which significantly reduces query time and outperforms RDKit PostgreSQL cartridge . myChEMBL 21 - NoSQL edition    Given that NoSQL technologies applied to computational chemistry and cheminformatics are gaining traction and popularity, we decided to include a taster in future myChEMBL releases. Two especially appealing technologies are Neo4j and MongoDB . The former is a graph database and the latter is a BSON document storage. We would like to provide IPython notebook -based tutorials explaining how to use this software to deal with common cheminformatics p

Webinar: using an API to access ChEMBL

  If you use ChEMBL via the interface and are interested in programmatic approaches then join  our  webinar   on November 10th @ 15:30 to find out more ! In this webinar, we'll provide an overview of the ChEMBL and UniChem APIs and work through some common examples. In the meantime, don’t forget that we have further documentation on our  web services  as well as a recent ChEMBL  webinar, a Blog and series of  FAQs .  Questions? Send us a message through the  Helpdesk .