Skip to main content

Molecular Databases and Molecule Complexity - Part 3

So we can run some numbers, to get an idea of the scale of the issue, and then draw things together (in the next post) with a couple of things we are thinking of ourselves to do in ChEMBL.

For a molecule stored in a database with a single undefined sp3 stereocenter, there are two possible distinct physical molecules (enantiomers), remember some properties are invariant w.r.t. the stereochemistry (e.g. logP) others aren't (e.g. binding energy to a receptor). As further undefined stereocenters are introduced, the number of possibilities increases as a simple combinatoric product. For three stereocenters, there are therefore 2**3 = 8 possibilities. There are a number of programs available to perform this stereo-enumeration - including stereoplex.

Enumeration of possible tautomers is a complex issue, and there has to be introduced the concept of an energy difference (which will reflect how frequent that tautomer occurs) - however the energy difference between two tautomers is crucially dependent on solvation and stabilisation of a particular tautomer by complexation in a binding site, so it is a not trivial task to treat this matter both comprehensively and accurately. There is probably an interesting average scaling of the number of 'reasonable tautomers' as a function of molecular weight for typical drug like molecules in a database such as ChEMBL (we just haven't looked yet). However, it is an area of active research, and there are many tools available to treat these systems - including MN.TAUTOMER.

Ionizable centers
As per tautomers there is the concept of reasonableness that needs to be applied here - in theory, benzene can act as both a base and an acid, but the pKb and pKa will be so outside the range encountered in what we currently understand as life-like conditions that it is irrelevant (the pKa of benzene is ~43). However, for molecules with 'regular' basic and acidic groups, there will be two (or more) states for each ionizable centers. There can be multiple states for some functional groups (e.g. polyprotic acids), such as phosphates which will have multiple pKa values, reflecting increasing levels of overall charge. These charge effects will greatly affect binding to a target. A further complicating factor is that the pKa of molecules is often perturbable by their molecular environment, and this shifting of 'standard' pKa values is often a defining feature of catalytic residues in enzymes.

However, for simple groups such as carboxylic acids, there are two states, and for simple aliphatic amines there are two states to be considered. These combine again in a combinatorial fashion, so a molecule with a simple basic and simple acidic center will have four possible states.

A key feature in dealing with the treatment of the ionization state of a molecule from a normalised chemical database is via prediction of the pKa/pKb of a molecule. There are many tools available to do this - including ACD/PhysChem Suite.

To further complicate things, the calculation of pKa/Pkb depends on the tautomers that the calculation is performed on.

Conformational flexibility
It is tempting to think of storing three-dimensional structures for molecules, since this information can be used in tasks such as docking of a library of rigid molecules to a receptor, or the generation of pharmacophores from a set of molecules that are known to bind to a receptor. However, in general the number of possible conformers is very large, and when combined with the additional complexities above of undefined stereocenters, tautomers, ionizable centers makes this a very challenging task. To give an idea of the complexity, two sp3-sp3 bonds will have three energy minima around that bond; as the number of rotatable bonds is increased, there will be an approximate combinatoric product, so for three independent sp3-sp3 rotatable bonds there will be 3**3 = 27 plausible conformers. Again these will have different energies (and therefore population frequencies), but again these energies are crucially dependent on tautomers, ionization and the solvent/receptor environment. It is complicated.

A very widely used estimate of the conformational flexibility of a molecule, and the implied entropic cost of ordering a flexible molecule on binding to a receptor, is the number of rotatable bonds.

Again there are many tools for the generation of reasonable three-dimensional conformers for a molecule - including CORINA.

So there is therefore a scale of complexity, molecules that are rigid, have no tautomeric forms, are not acids or bases and have completely defined (or no) stereochemistry are unambiguous, and can be safely used from a database like ChEMBL for things like docking. It is also possible to calculate a variety of descriptors for these molecules, and these calculations will be 'robust'. However it is important to appreciate that many property calculation methods require the selection of a single representative structure from the set of possibles.

Other molecules are more complex, and to obtain a physically relevant structure (or set of low energy structures), may require substantial processing/enumeration, the number of possible physical forms can easily extend into hundreds for drug-like molecules; for example, the simple molecule below, has 96 possible forms to consider for something like docking (and this ignores the very large number of conformational states from the 10 rotatable bonds in the structure, which alone are about 3**10 or over 59,000 'states').

An annotated form of the points of interest in this molecule is

In the next post, we will try and bring this together in the context of the ChEMBL database, and how we normalise our chemical structures on registration, and also how we calculate our descriptors, and some of the assumptions we make in this process.

The image above comes from the ever inspiring xkcd.


Loving this series; it's good reading material for people starting in cheminformatics! And I'm very much looking forward to the next post! Particularly, your description on how to deal with mixture drugs!
Christophe said…
Beware that the stereochemistry of the 2 centers shown as known may not be absolute!

Popular posts from this blog

ChEMBL 34 is out!

We are delighted to announce the release of ChEMBL 34, which includes a full update to drug and clinical candidate drug data. This version of the database, prepared on 28/03/2024 contains:         2,431,025 compounds (of which 2,409,270 have mol files)         3,106,257 compound records (non-unique compounds)         20,772,701 activities         1,644,390 assays         15,598 targets         89,892 documents Data can be downloaded from the ChEMBL FTP site: Please see ChEMBL_34 release notes for full details of all changes in this release: New Data Sources European Medicines Agency (src_id = 66): European Medicines Agency's data correspond to EMA drugs prior to 20 January 2023 (excluding vaccines). 71 out of the 882 newly added EMA drugs are only authorised by EMA, rather than from other regulatory bodies e.g.

New SureChEMBL announcement

(Generated with DALL-E 3 ∙ 30 October 2023 at 1:48 pm) We have some very exciting news to report: the new SureChEMBL is now available! Hooray! What is SureChEMBL, you may ask. Good question! In our portfolio of chemical biology services, alongside our established database of bioactivity data for drug-like molecules ChEMBL , our dictionary of annotated small molecule entities ChEBI , and our compound cross-referencing system UniChem , we also deliver a database of annotated patents! Almost 10 years ago , EMBL-EBI acquired the SureChem system of chemically annotated patents and made this freely accessible in the public domain as SureChEMBL. Since then, our team has continued to maintain and deliver SureChEMBL. However, this has become increasingly challenging due to the complexities of the underlying codebase. We were awarded a Wellcome Trust grant in 2021 to completely overhaul SureChEMBL, with a new UI, backend infrastructure, and new f

Accessing SureChEMBL data in bulk

It is the peak of the summer (at least in this hemisphere) and many of our readers/users will be on holiday, perhaps on an island enjoying the sea. Luckily, for the rest of us there is still the 'sea' of SureChEMBL data that awaits to be enjoyed and explored for hidden 'treasures' (let me know if I pushed this analogy too far). See here and  here for a reminder of SureChEMBL is and what it does.  This wealth of (big) data can be accessed via the SureChEMBL interface , where users can submit quite sophisticated and granular queries by combining: i) Lucene fields against full-text and bibliographic metadata and ii) advanced structure query features against the annotated compound corpus. Examples of such queries will be the topic of a future post. Once the search results are back, users can browse through and export the chemistry from the patent(s) of interest. In addition to this functionality, we've been receiving user requests for  local (behind the