Skip to main content

New Drug Approvals 2011 - Pt. XV Rilpivirine (EdurantTM)





ATC code (partial): J05AG

On May 20th, the FDA approved Rilpivirine (Tradename: Edurant; Research Code: TMC-278, NDA 202022), an HIV-1 Non-nucleoside reverse transcriptase inhibitor (NNRTI), for the treatment of HIV infection in treatment naive patients in combination with other HIV therapies. HIV infection is a serious, and if untreated fatal infection caused by a lentivirus, however due to intensive research, leading to a wide variety of antiviral agents the disease is treatable with a substantial increase in quality of life anticipatable.

Rilpivirine is an inhibitor of the essential reverse transcriptase (RT) enzyme of HIV-1. (ChEMBLID:CHEMBL247; Uniprot ID:Q72547), a viral protein required for the transcription of the single-stranded RNA genome of HIV-1 into double-stranded DNA - this is the opposite of the classical transcription of DNA into RNA. The RT enzyme is translated as part of a long complex gag-pol polyprotein, and requires specific proteolytic cleavage by a virally encoded protease (HIV-1 PR) - this protease is also the target of many successful HIV therapies. There are two distinct binding sites within the RT enzyme that are therapeutically targetable - first is the catalytic center for drugs such as AZT and other nucleoside analogues, the second is the 'allosteric' non-nucleoside site, which is only usefully present in the HIV-1 RT sequence, and so NNRTI agents are usually specific for HIV-1. Rilpivirine is a non-competitive inhibitor of HIV-1 RT.

There are many protein structures known for RT in complex with inhibitors, including that of the complex with TMC-278/rilpivirine itself - PDBe:3mee. The RT enzyme has an interesting composition, being a heterodimer of two proteins derived from the same gag-pol polyprotein - one called p66, the other p51, both contain the polymerase functionality (the polymerase domain is composed of four structural subunits, within each polymerase unit, these domains are arranged differently forming an asymmetric dimer), the p66 additionally contains a further catalytic function - Ribonuclease H.




There are a number of other approved NNRTIs, and a large number in either current or stalled clinical development. Approved drugs include the USANs Efivarenz, Nevirapine, Delaviridine & Etravirine.




Rilpivirine (IUPAC:4-{[4-({4-[(E)-2-cyanovinyl]-2,6-dimethylphenyl}amino)pyrimidin-2-yl]amino}benzonitrile; SMILES: CC1=CC(=CC(=C1NC2=NC(=NC=C2)NC3=CC=C(C=C3)C#N)C)C=CC#N
PubChem:6451164) is an achiral synthetic small molecule drug, it is a member of the diaryl pyrimidine (DAPY) class of NNRTIs. It has a molecular weight of 366.4 Da, contains 2 hydrogen bond donors, 4 hydrogen bond acceptors, and has a LogP of 4.5.

Rilpivirine is available as oral tablets contains 27.5 mg of Rilpivirine hydrochloride (equivalent to 25 mg of active ingredient). Rilpivirine should be administered with food, since in fasted patients, absorption is significantly lower. Human plasma protein binding (ppb) primarily to serum albumin is approximately 99.7%. The primary metabolising route of Rilpivirine is through oxidative metabolism by CYP3A4, with a half-life of ca. 50 hr, with elimination being largely via feces.

The license holder for Rilpivirine is Johnson & Johnson., and the full prescribing information can be found here.

Comments

Popular posts from this blog

Here's a nice Christmas gift - ChEMBL 35 is out!

Use your well-deserved Christmas holidays to spend time with your loved ones and explore the new release of ChEMBL 35!            This fresh release comes with a wealth of new data sets and some new data sources as well. Examples include a total of 14 datasets deposited by by the ASAP ( AI-driven Structure-enabled Antiviral Platform) project, a new NTD data se t by Aberystwyth University on anti-schistosome activity, nine new chemical probe data sets, and seven new data sets for the Chemogenomic library of the EUbOPEN project. We also inlcuded a few new fields that do impr ove the provenance and FAIRness of the data we host in ChEMBL:  1) A CONTACT field has been added to the DOCs table which should contain a contact profile of someone willing to be contacted about details of the dataset (ideally an ORCID ID; up to 3 contacts can be provided). 2) In an effort to provide more detailed information about the source of a deposited dat...

ChEMBL 34 is out!

We are delighted to announce the release of ChEMBL 34, which includes a full update to drug and clinical candidate drug data. This version of the database, prepared on 28/03/2024 contains:         2,431,025 compounds (of which 2,409,270 have mol files)         3,106,257 compound records (non-unique compounds)         20,772,701 activities         1,644,390 assays         15,598 targets         89,892 documents Data can be downloaded from the ChEMBL FTP site:  https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_34/ Please see ChEMBL_34 release notes for full details of all changes in this release:  https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_34/chembl_34_release_notes.txt New Data Sources European Medicines Agency (src_id = 66): European Medicines Agency's data correspond to EMA drugs prior to 20 January 2023 (excluding ...

Improved querying for SureChEMBL

    Dear SureChEMBL users, Earlier this year we ran a survey to identify what you, the users, would like to see next in SureChEMBL. Thank you for offering your feedback! This gave us the opportunity to have some interesting discussions both internally and externally. While we can't publicly reveal precisely our plans for the coming months (everything will be delivered at the right time), we can at least say that improving the compound structure extraction quality is a priority. Unfortunately, the change won't happen overnight as reprocessing 167 millions patents takes a while. However, the good news is that the new generation of optical chemical structure recognition shows good performance, even for patent images! We hope we can share our results with you soon. So in the meantime, what are we doing? You may have noticed a few changes on the SureChEMBL main page. No more "Beta" flag since we consider the system to be stable enough (it does not mean that you will never ...

Improvements in SureChEMBL's chemistry search and adoption of RDKit

    Dear SureChEMBL users, If you frequently rely on our "chemistry search" feature, today brings great news! We’ve recently implemented a major update that makes your search experience faster than ever. What's New? Last week, we upgraded our structure search engine by aligning it with the core code base used in ChEMBL . This update allows SureChEMBL to leverage our FPSim2 Python package , returning results in approximately one second. The similarity search relies on 256-bit RDKit -calculated ECFP4 fingerprints, and a single instance requires approximately 1 GB of RAM to run. SureChEMBL’s FPSim2 file is not currently available for download, but we are considering generating it periodicaly and have created it once for you to try in Google Colab ! For substructure searches, we now also use an RDKit -based solution via SubstructLibrary , which returns results several times faster than our previous implementation. Additionally, structure search results are now sorted by...

ChEMBL brings drug bioactivity data to the Protein Data Bank in Europe

In the quest to develop new drugs, understanding the 3D structure of molecules is crucial. Resources like the Protein Data Bank in Europe (PDBe) and the Cambridge Structural Database (CSD) provide these 3D blueprints for many biological molecules. However, researchers also need to know how these molecules interact with their biological target – their bioactivity. ChEMBL is a treasure trove of bioactivity data for countless drug-like molecules. It tells us how strongly a molecule binds to a target, how it affects a biological process, and even how it might be metabolized. But here's the catch: while ChEMBL provides extensive information on a molecule's activity and cross references to other data sources, it doesn't always tell us if a 3D structure is available for a specific drug-target complex. This can be a roadblock for researchers who need that structural information to design effective drugs. Therefore, connecting ChEMBL data with resources like PDBe and CSD is essen...