Skip to main content

Drug Repurposing: Screening of known drugs against malaria

Just a quick (but surprisingly wordy) follow up on the previous post on the drug profiling against malaria. Drug repurposing/reuse/rescue offers great potential for the enhancement of patient lives and also is a quick way of pushing new therapies through the clinic. It is often see as low cost and low risk, is highly translational in terms of the research, and there are some stunning success stories. It is therefore very sensible to screen known drugs in assays of interest, which is exactly what was done in the recent, excellent, Science paper.

The compounds in Table 1 of the paper are reported at the highly active set (and these exclude already known established antimalarial drugs which all pass the selection criteria used for compounds in this table, this seems a pretty good and pragmatic place to set cutoffs). For use as an widely-used and developing world-applicable antimalarial (co)-therapy I would have imagined that ideally you would want established well tolerated daily dosing, since existing malaria therapies are oral and have (generally) good tolerability.

So, for this list of 32 drugs, a quick internet-based classification was done - factors analysed included:
  1. whether the drugs were already approved for human use 
  2. the dosage/absorption route
  3. any special monitoring requirements (there is probably no option for dose titration/liver monitoring for the vast majority of malaria victims). 
The results are interesting, and a little sobering.

Of the 32, I could find (using a flaky internet connection from the my holiday sun-chair) data that looked OK on 30 (the ones I couldn't easily find things on were suberoylanilide and Alazanine triclofenate - if others know anything, post something in the comments). Of these 30, five (20%) are currently animal use only, nine (30%) are IV use only, one (3%) is not currently approved in humans or animals (Lestautinib), and eight (27%) are topical/inhaled use only. This leaves six (20%) that have the desired profile of being orally dosed and currently approved for human usage. Of these, four have restrictive use/or appear to be poorly tolerated (for example, fumagilin is hospital use only and requires careful monitoring). So this leaves two reasonable candidates for first pass consideration as real 'drug-repurposing' candidates - Dextroamphetamine saccharate and orlistat.

Dextroamphetamine will clearly have regulatory and huge misuse potential, so is also probably a non-starter, regardless of any PK/exposure concerns; so Orlistat then? Orlistat is used as an over-the-counter (in some territories) and prescription drug to assist with weight loss. If works by reducing the absorption of fat from the diet, leading to a variety of side effects - there is much discussion on the safety and side effects (google will find a lot of comment), so in populations that are in malaria endemic regions, a drug that could be dosed to underweight malnourished patients and that reduce the absorption of a key food group (and also most fatty essential vitamins) may not be optimal. A larger issue though is that orlistat works in the lumen of the stomach and intestine, where the target human enzyme is secreted, so for obesity treatment, orlistat does not need to be absorbed into the rest of the body, and it isn't. So, ignoring the side effects for a moment, the negligible systemic exposure of orlistat again probably precludes its use as an antimalarial.

It will be interesting to me if this sort of pattern of results, and the importance of considering in vitro to in vivo translation for 'known drug' screening is typical. Sorry for the long post - thoughts, comments and discussion most welcome.

Update: Looking at the supplementary material for the paper - it seems likely that suberoylanilide from table 1 is actually suberoylanilide hydroxamic acid (aka Vorinostat, or Zolinza). This is an oral drug for the treatment of certain refractory cancers, it can give rise to a wide range of serious side effects that would almost certainly preclude widespread non-supervised use (at least at the doses used for current indications).

Update 2: Thanks to the authors for confirming that the suberoylanilide should be SAHA, and also for confirming that Alazanide triclofenate is an unusual compound with not a lot of current published literature.


Bio to Chem said…
No need to apologise. IMCO long technical posts are better than short ones. Lets 'ave more of 'em

Popular posts from this blog

A python client for accessing ChEMBL web services

Motivation The CheMBL Web Services provide simple reliable programmatic access to the data stored in ChEMBL database. RESTful API approaches are quite easy to master in most languages but still require writing a few lines of code. Additionally, it can be a challenging task to write a nontrivial application using REST without any examples. These factors were the motivation for us to write a small client library for accessing web services from Python. Why Python? We choose this language because Python has become extremely popular (and still growing in use) in scientific applications; there are several Open Source chemical toolkits available in this language, and so the wealth of ChEMBL resources and functionality of those toolkits can be easily combined. Moreover, Python is a very web-friendly language and we wanted to show how easy complex resource acquisition can be expressed in Python. Reinventing the wheel? There are already some libraries providing access to ChEMBL d

ChEMBL 29 Released

  We are pleased to announce the release of ChEMBL 29. This version of the database, prepared on 01/07/2021 contains: 2,703,543 compound records 2,105,464 compounds (of which 2,084,724 have mol files) 18,635,916 activities 1,383,553 assays 14,554 targets 81,544 documents Data can be downloaded from the ChEMBL FTP site: .  Please see ChEMBL_29 release notes for full details of all changes in this release: New Deposited Datasets EUbOPEN Chemogenomic Library (src_id = 55, ChEMBL Document IDs CHEMBL4649982-CHEMBL4649998): The EUbOPEN consortium is an Innovative Medicines Initiative (IMI) funded project to enable and unlock biology in the open. The aims of the project are to assemble an open access chemogenomic library comprising about 5,000 well annotated compounds covering roughly 1,000 different proteins, to synthesiz

Julia meets RDKit

Julia is a young programming language that is getting some traction in the scientific community. It is a dynamically typed, memory safe and high performance JIT compiled language that was designed to replace languages such as Matlab, R and Python. We've been keeping an an eye on it for a while but we were missing something... yes, RDKit! Fortunately, Greg very recently added the MinimalLib CFFI interface to the RDKit repertoire. This is nothing else than a C API that makes it very easy to call RDKit from almost any programming language. More information about the MinimalLib is available directly from the source . The existence of this MinimalLib CFFI interface meant that we no longer had an excuse to not give it a go! First, we added a BinaryBuilder recipe for building RDKit's MinimalLib into Julia's Yggdrasil repository (thanks Mosè for reviewing!). The recipe builds and automatically uploads the library to Julia's general package registry. The build currently targe

Identifying relevant compounds in patents

  As you may know, patents can be inherently noisy documents which can make it challenging to extract drug discovery information from them, such as the key targets or compounds being claimed. There are many reasons for this, ranging from deliberate obfuscation through to the long and detailed nature of the documents. For example, a typical small molecule patent may contain extensive background information relating to the target biology and disease area, chemical synthesis information, biological assay protocols and pharmacological measurements (which may refer to endogenous substances, existing therapies, reaction intermediates, reagents and reference compounds), in addition to description of the claimed compounds themselves.  The SureChEMBL system extracts this chemical information from patent documents through recognition of chemical names, conversion of images and extraction of attached files, and allows patents to be searched for chemical structures of interest. However, the curren

New Drug Warnings Browser

As mentioned in the announcement post of  ChEMBL 29 , a new Drug Warnings Browser has been created. This is an updated version of the entity browsers in ChEMBL ( Compounds , Targets , Activities , etc). It contains new features that will be tried out with the Drug Warnings and will be applied to the other entities gradually. The new features of the Drug Warnings Browser are described below. More visible buttons to link to other entities This functionality is already available in the old entity browsers, but the button to use it is not easily recognised. In the new version, the buttons are more visible. By using those buttons, users can see the related activities, compounds, drugs, mechanisms of action and drug indications to the drug warnings selected. The page will take users to the corresponding entity browser with the items related to the ones selected, or to all the items in the dataset if the user didn’t select any. Additionally, the process of creating the join query is no