Skip to main content

New Drug Approvals 2011 - Pt. XXV Brentuximab vedotin (AdcetrisTM)






ATC code:L01XC12

On 19th August 2011, the FDA approved Brentuximab vedotin (trade name AdcetrisTM, ATC code:L01XC12, research code:SGN-35, aAC10-vcMMAE), a antibody drug conjugate (ADC) targeting CD-30, indicated for the treatment of patients with Hodgkin's lymphoma after failure of autologous stem cell transplant (ASCT) or after failure of at least two prior multi-agent chemotherapy regimens in patients who are not ASCT candidates (1.1); and the treatment of patients with systemic anapaestic large-cell lymphoma after failure of at least one prior multi-agent chemotherapy regimen.

Hodgkin's lymphoma is a cancer of cells derived from white blood cells called lymphocytes. In Hodgkin's lymphoma, the disease spreads from one lymph node group to another, and then leads to more systemic effects. Hodgkin's lymphoma can be treated with radiation therapy, chemotherapy or autologous hematopoietic stem cell transplantation. The occurrence of the disease shows two age peaks: the first in young adulthood (age 15–35) and the second in those over 55 years old

Brentuximab vedotin's molecular (for the antibody component of the ADC, Brentuximab) target is CD30 (Uniprot: P28908; canSAR ; PFAM: PF00020), which is expressed on activated T- and B-cells, and also is an established tumour marker. Endogenous CD30 ligands include TRAF1, TRAF2, TRAF3 and TRAF5. CD30 is a transmembrane protein, 577 amino acid long, containing three related copies of the TNFR_c6 domain (PFAM:PF00020). The structure of TRAF2 complexed to part of CD30 is known (see PDBe:1d01)

The antibody component Brentuximab binds to CD30 expressing cells, the the complex is then internalised, and the cytotoxic agent Monomethyl auristatin E (MMAE) which blocks cell division by preventing tubulin polymerisation. Auristatin is a marine natural product peptide derivative. There are approximately 4 copies of MMAE coupled to each antibody, and MMAE is linked through a protease activatable linker. The total molecular weight of Brentuximab vedotin is ca. 153 kDa. Brentuximab can therefore be considered to have two targets (CD30 and tubulin), and also to be a prodrug.

Brentuxumab vedotin is the second US approved antibody drug conjugate - the first being gemtuzumab ozagamicin (Mylotarg) which was approved in 2001, but subsequently withdrawn from the market. A significant number of ADCs are currently in clinical development.

Brentuximab is a human antibody. The antibody portion of Brentuximab vedotin has the sequence of two copies of:

>Brentuximab vedotin - heavy chain
QIQLQQSGPEVVKPGASVKISCKASGYTFTDYYITWVKQKPGQGLEWIGWIYPGSGNTKY
NEKFKGKATLTVDTSSSTAFMQLSSLTSEDTAVYFCANYGNYWFAYWGQGTQVTVSAAST 
KGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLY 
SLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSV 
FLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTY 
RVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTK
NQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQG 
NVFSCSVMHEALHNHYTQKSLSLSPG
>Brentuximab vedotin - light chain
DIVLTQSPASLAVSLGQRATISCKASQSVDFDGDSYMNWYQQKPGQPPKVLIYAASNLES 
GIPARFSGSGSGTDFTLNIHPVEEEDAATYYCQQSNEDPWTFGGGTKLEIKRTVAAPSVF 
IFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLS 
STLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC

The linker-MMAE has the following structure:


Brentuximab is administered intravenously, and the recommended dose is 1.8 mg/kg administered over 30 minutes every 3 weeks for a maximum of sixteen cycles doses. The terminal half-life (t1/2) is 4 to 6 days.

The full US prescribing information for Brentuximab vedotin can be found here. Adcetris™ is a product of Seattle Genetics


Comments

Popular posts from this blog

Improvements in SureChEMBL's chemistry search and adoption of RDKit

    Dear SureChEMBL users, If you frequently rely on our "chemistry search" feature, today brings great news! We’ve recently implemented a major update that makes your search experience faster than ever. What's New? Last week, we upgraded our structure search engine by aligning it with the core code base used in ChEMBL . This update allows SureChEMBL to leverage our FPSim2 Python package , returning results in approximately one second. The similarity search relies on 256-bit RDKit -calculated ECFP4 fingerprints, and a single instance requires approximately 1 GB of RAM to run. SureChEMBL’s FPSim2 file is not currently available for download, but we are considering generating it periodicaly and have created it once for you to try in Google Colab ! For substructure searches, we now also use an RDKit -based solution via SubstructLibrary , which returns results several times faster than our previous implementation. Additionally, structure search results are now sorted by

Improved querying for SureChEMBL

    Dear SureChEMBL users, Earlier this year we ran a survey to identify what you, the users, would like to see next in SureChEMBL. Thank you for offering your feedback! This gave us the opportunity to have some interesting discussions both internally and externally. While we can't publicly reveal precisely our plans for the coming months (everything will be delivered at the right time), we can at least say that improving the compound structure extraction quality is a priority. Unfortunately, the change won't happen overnight as reprocessing 167 millions patents takes a while. However, the good news is that the new generation of optical chemical structure recognition shows good performance, even for patent images! We hope we can share our results with you soon. So in the meantime, what are we doing? You may have noticed a few changes on the SureChEMBL main page. No more "Beta" flag since we consider the system to be stable enough (it does not mean that you will never

ChEMBL brings drug bioactivity data to the Protein Data Bank in Europe

In the quest to develop new drugs, understanding the 3D structure of molecules is crucial. Resources like the Protein Data Bank in Europe (PDBe) and the Cambridge Structural Database (CSD) provide these 3D blueprints for many biological molecules. However, researchers also need to know how these molecules interact with their biological target – their bioactivity. ChEMBL is a treasure trove of bioactivity data for countless drug-like molecules. It tells us how strongly a molecule binds to a target, how it affects a biological process, and even how it might be metabolized. But here's the catch: while ChEMBL provides extensive information on a molecule's activity and cross references to other data sources, it doesn't always tell us if a 3D structure is available for a specific drug-target complex. This can be a roadblock for researchers who need that structural information to design effective drugs. Therefore, connecting ChEMBL data with resources like PDBe and CSD is essen

ChEMBL 34 is out!

We are delighted to announce the release of ChEMBL 34, which includes a full update to drug and clinical candidate drug data. This version of the database, prepared on 28/03/2024 contains:         2,431,025 compounds (of which 2,409,270 have mol files)         3,106,257 compound records (non-unique compounds)         20,772,701 activities         1,644,390 assays         15,598 targets         89,892 documents Data can be downloaded from the ChEMBL FTP site:  https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_34/ Please see ChEMBL_34 release notes for full details of all changes in this release:  https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_34/chembl_34_release_notes.txt New Data Sources European Medicines Agency (src_id = 66): European Medicines Agency's data correspond to EMA drugs prior to 20 January 2023 (excluding vaccines). 71 out of the 882 newly added EMA drugs are only authorised by EMA, rather than from other regulatory bodies e.g.

In search of the perfect assay description

Credit: Science biotech, CC BY-SA 4.0 Assays des cribe the experimental set-up when testing the activity of drug-like compounds against biological targets; they provide useful context for researchers interested in drug-target relationships. Ver sion 33 of ChEMBL contains 1.6 million diverse assays spanning ADMET, physicochemical, binding, functional and toxicity experiments. A set of well-defined and structured assay descriptions would be valuable for the drug discovery community, particularly for text mining and NLP projects. These would also support ChEMBL's ongoing efforts towards an  in vitro  assay classification. This Blog post will consider the features of the 'perfect' assay description and provide a guide for depositors on the submission of high quality data. ChEMBL's assays are typically structured with the overall aim, target, and method .  The ideal assay description is succinct but contains all the necessary information for easy interpretation by database u