Skip to main content

Drug Side Effect Prediction and Validation


There's a paper just published in Nature getting a lot of coverage on the internet at the moment from Novartis/UCSF, and for good reason - but as the cartoon above states, it will probably have less impact than news on Justin Bieber's new haircut, or the latest handbags from Christian Lacroix. It uses the SEA target prediction method, trained using ChEMBL bioactivity data in order to predict new targets (and then by association side effects) for existing drugs. These are then experimentally tested, and the results confirmed in a number of cases - this experimental validation is clearly complex and expensive, so it is great news that in silico methods can start to generate realistic and testable hypotheses for adverse drug reactions (there are also positive side effects too, and these are pretty interesting to look for using these methods as well).

The use of SEA as the target prediction method was inevitable given the authors involved, but following up on some presentations at this springs National ACS meeting in San Diego. There would also seem to be clear benefits in including other methods into linking a compound to a target - nearest neighbour using simple Tanimoto measures, and naive Bayes/ECFPP type approaches. The advantage of the SEA approach is that it seems to generalise better (sorry I can't remember who gave the talk on this), and so probably can make more comprehensive/complete predictions, and be less tied to the training data (in this case ChEMBL) - however as databases grow, these predictions will get a lot better. There will also be big improvements possible if other data adopts the same basic data model as ChEMBL (or something like the services in OpenPHACTS), so methods can pool across different data sources, including proprietary in-house data.

There are probably papers being written right now about a tournament/consensus multi-method approach to target prediction using an ensemble of the above methods. (If such a paper uses random forests, and I get asked to review it, it will be carefully stored in /dev/null) ;)

So some things I think are useful improvements to this sort of approach.

1) Inclusion of the functional assays from ChEMBL in predictions (i.e. don't tie oneself to a simple molecular target assay). The big problem here though is that although pooling of target bioassay data is straightforward - pooling/clustering of functional data is not.
2) Where do you set affinity thresholds, and how do the affinities related to the pharmacodyamics of the side-effects. My view is that there will be some interesting analyses of ChEMBL that maybe, just maybe, allow one to address this issue. Remember, we know quite a lot about the exposure of the human body, to  a given drug at a given dose level...
3) Consideration of (active) metabolites. It's pretty straightforward now to predict structures of likely metabolites (not at a quantitative level though) and this may be useful in drugs that are extensively metabolised in vivo.

Anyway, finish off with some eye-candy, a picture from the paper (hopefully allowed under fair use!).


And here's a reference to the paper, in good old Bell AT&T labs refer format - Mendeley-Schmendeley as my mother used to say when I was a boy.

%T Large-scale prediction and testing of drug activity on side-effect targets
%A E. Lounkine
%A M.J. Keiser
%A S. Whitebread
%A D. Mikhailov
%A J. Hamon
%A J.L. Jenkins
%A P. Lavan
%A E. Weber
%A A.K. Doak
%A S. Côté
%A B.K. Shoichet
%A L. Urban
%J Nature
%D 2012
%O doi:10.1038/nature11159

Comments

Popular posts from this blog

ChEMBL 34 is out!

We are delighted to announce the release of ChEMBL 34, which includes a full update to drug and clinical candidate drug data. This version of the database, prepared on 28/03/2024 contains:         2,431,025 compounds (of which 2,409,270 have mol files)         3,106,257 compound records (non-unique compounds)         20,772,701 activities         1,644,390 assays         15,598 targets         89,892 documents Data can be downloaded from the ChEMBL FTP site:  https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_34/ Please see ChEMBL_34 release notes for full details of all changes in this release:  https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_34/chembl_34_release_notes.txt New Data Sources European Medicines Agency (src_id = 66): European Medicines Agency's data correspond to EMA drugs prior to 20 January 2023 (excluding vaccines). 71 out of the 882 newly added EMA drugs are only authorised by EMA, rather than from other regulatory bodies e.g.

New SureChEMBL announcement

(Generated with DALL-E 3 ∙ 30 October 2023 at 1:48 pm) We have some very exciting news to report: the new SureChEMBL is now available! Hooray! What is SureChEMBL, you may ask. Good question! In our portfolio of chemical biology services, alongside our established database of bioactivity data for drug-like molecules ChEMBL , our dictionary of annotated small molecule entities ChEBI , and our compound cross-referencing system UniChem , we also deliver a database of annotated patents! Almost 10 years ago , EMBL-EBI acquired the SureChem system of chemically annotated patents and made this freely accessible in the public domain as SureChEMBL. Since then, our team has continued to maintain and deliver SureChEMBL. However, this has become increasingly challenging due to the complexities of the underlying codebase. We were awarded a Wellcome Trust grant in 2021 to completely overhaul SureChEMBL, with a new UI, backend infrastructure, and new f

Accessing SureChEMBL data in bulk

It is the peak of the summer (at least in this hemisphere) and many of our readers/users will be on holiday, perhaps on an island enjoying the sea. Luckily, for the rest of us there is still the 'sea' of SureChEMBL data that awaits to be enjoyed and explored for hidden 'treasures' (let me know if I pushed this analogy too far). See here and  here for a reminder of SureChEMBL is and what it does.  This wealth of (big) data can be accessed via the SureChEMBL interface , where users can submit quite sophisticated and granular queries by combining: i) Lucene fields against full-text and bibliographic metadata and ii) advanced structure query features against the annotated compound corpus. Examples of such queries will be the topic of a future post. Once the search results are back, users can browse through and export the chemistry from the patent(s) of interest. In addition to this functionality, we've been receiving user requests for  local (behind the

New Drug Approvals - Pt. XVII - Telavancin (Vibativ)

The latest new drug approval, on 11th September 2009 was Telavancin - which was approved for the treatment of adults with complicated skin and skin structure infections (cSSSI) caused by susceptible Gram-positive bacteria , including Staphylococcus aureus , both methicillin-resistant (MRSA) and methicillin-susceptible (MSSA) strains. Telavancin is also active against Streptococcus pyogenes , Streptococcus agalactiae , Streptococcus anginosus group (includes S. anginosus, S. intermedius and S. constellatus ) and Enterococcus faecalis (vancomycin susceptible isolates only). Telavancin is a semisynthetic derivative of Vancomycin. Vancomycin itself is a natural product drug, isolated originally from soil samples in Borneo, and is produced by controlled fermentation of Amycolatopsis orientalis - a member of the Actinobacteria . Telavancin has a dual mechanism of action, firstly it inhibits bacterial cell wall synthesis by interfering with the polymerization and cross-linking of peptid

A python client for accessing ChEMBL web services

Motivation The CheMBL Web Services provide simple reliable programmatic access to the data stored in ChEMBL database. RESTful API approaches are quite easy to master in most languages but still require writing a few lines of code. Additionally, it can be a challenging task to write a nontrivial application using REST without any examples. These factors were the motivation for us to write a small client library for accessing web services from Python. Why Python? We choose this language because Python has become extremely popular (and still growing in use) in scientific applications; there are several Open Source chemical toolkits available in this language, and so the wealth of ChEMBL resources and functionality of those toolkits can be easily combined. Moreover, Python is a very web-friendly language and we wanted to show how easy complex resource acquisition can be expressed in Python. Reinventing the wheel? There are already some libraries providing access to ChEMBL d