Skip to main content

Assays, assays and a few more assays....

So, some more stuff on assays, in my quest to have something different to speak about over the summer; this post is about the tests a compound needs to pass through before it can become a drug. For a real test case, none of those green and red blobs I normally talk about, I took the excellent paper published in Science a few years ago - this is a great paper, discovering a clinical candidate for the treatment of malaria from a natural product screen. NITD609 is currently in phase 1 trials.

%T Spiroindolones, a Potent Compound Class for the Treatment of Malaria
%J Science 
%D 2010
%V 329
%P 1175-1180 
%O DOI: 10.1126/science.1193225
%A M. Rottmann 
%A C. McNamara
%A B.K.S. Yeung
%A M.C.S. Lee
%A B. Zou
%A B. Russell
%A P. Seitz
%A D.M. Plouffe
%A N.V. Dharia
%A J. Tan
%A S.B. Cohen
%A K.R. Spencer
%A G.E. González-Páez
%A S.B. Lakshminarayana
%A A. Goh
%A R. Suwanarusk
%A T. Jegla
%A E.K. Schmitt
%A H.-P. Beck
%A R. Brun
%A F. Nosten
%A L. Renia
%A V. Dartois
%A T.H. Keller
%A D.A. Fidock
%A E. A. Winzeler
%A T.T. Diagana

The great thing in this paper is that it gives a reasonably complete package of data in the supplementary data, and from this it's possible to assemble the series of assays used to go from an HTS screen to a clinical development compound. I've put these together in the diagram below - as a linear graph. It's interesting to see that the majority of distinct assay types are connected with ADMET properties as opposed to efficacy. To be clear, this graph is one possible cascade of assays, formulated as a linear string, in reality, not all assays are done on all compounds, and some assays are done in parallel - but I'd still argue its a useful way to think about the progress of a compound to a drug (especially when this formulation is done at scale across many targets/diseases.

Another key point is that the ADMET assays are generic, i.e. they apply to essentially all drug discovery programs, and so can be happily abstracted out and treated separately (maybe ;) ).

Here's a diagram - I know, I know, it looks like it was done by a small child. Oh, and it is all about red and green blobs after all! Ways of improving it would be to have the numbers of input and output compounds at relevant stages, and maybe splitting out the lead discovery, from the lead optimisation assays (but the paper isn't that clear on this). Click image to make it bigger.

The order/paralellism aspect only affects the ADMET assays, the order of the efficacy assays will be as presented; my guess is, based on the systems I've looked at so far (not too many), that in general the efficacy assays will be linearly deployed, which has some good computational properties.


Popular posts from this blog

ChEMBL 34 is out!

We are delighted to announce the release of ChEMBL 34, which includes a full update to drug and clinical candidate drug data. This version of the database, prepared on 28/03/2024 contains:         2,431,025 compounds (of which 2,409,270 have mol files)         3,106,257 compound records (non-unique compounds)         20,772,701 activities         1,644,390 assays         15,598 targets         89,892 documents Data can be downloaded from the ChEMBL FTP site: Please see ChEMBL_34 release notes for full details of all changes in this release: New Data Sources European Medicines Agency (src_id = 66): European Medicines Agency's data correspond to EMA drugs prior to 20 January 2023 (excluding vaccines). 71 out of the 882 newly added EMA drugs are only authorised by EMA, rather than from other regulatory bodies e.g.

New SureChEMBL announcement

(Generated with DALL-E 3 ∙ 30 October 2023 at 1:48 pm) We have some very exciting news to report: the new SureChEMBL is now available! Hooray! What is SureChEMBL, you may ask. Good question! In our portfolio of chemical biology services, alongside our established database of bioactivity data for drug-like molecules ChEMBL , our dictionary of annotated small molecule entities ChEBI , and our compound cross-referencing system UniChem , we also deliver a database of annotated patents! Almost 10 years ago , EMBL-EBI acquired the SureChem system of chemically annotated patents and made this freely accessible in the public domain as SureChEMBL. Since then, our team has continued to maintain and deliver SureChEMBL. However, this has become increasingly challenging due to the complexities of the underlying codebase. We were awarded a Wellcome Trust grant in 2021 to completely overhaul SureChEMBL, with a new UI, backend infrastructure, and new f

Accessing SureChEMBL data in bulk

It is the peak of the summer (at least in this hemisphere) and many of our readers/users will be on holiday, perhaps on an island enjoying the sea. Luckily, for the rest of us there is still the 'sea' of SureChEMBL data that awaits to be enjoyed and explored for hidden 'treasures' (let me know if I pushed this analogy too far). See here and  here for a reminder of SureChEMBL is and what it does.  This wealth of (big) data can be accessed via the SureChEMBL interface , where users can submit quite sophisticated and granular queries by combining: i) Lucene fields against full-text and bibliographic metadata and ii) advanced structure query features against the annotated compound corpus. Examples of such queries will be the topic of a future post. Once the search results are back, users can browse through and export the chemistry from the patent(s) of interest. In addition to this functionality, we've been receiving user requests for  local (behind the