Skip to main content

Tastypie & Chempi

One of the immediate consequences of refactoring our webservices using Django, Tastypie and related approaches (as described here) is that we can run them on almost any database backend. Django abstracts communication with database and using custom QueryManagers we were able to implement chemisty-specific opererations, such as substructure and similarity search in a database agnostic manner.

This means, that if we want, we can use only Open Source components (such as Postgres and RDKit), or elect to use optimised commercially sourced software as appropriate. However, what if we go one step further and try to use Open Hardware as well? This is exactly what we've just done! We managed to install full ChEMBL 17 on raspbery pi.

Some frequently asked questions (at lease those that have been asked internally) and technical details are below:

1. How much space does it take?

12 Gb, including OS, data and all relevant software. Unfortunately we a used 32 Gb SD card so this is size if you would like to use our cloned disk image.

EDIT: Compressed image takes 4.13 Gb.

2. What OS is it running?

Raspbian, free operating system based on Debian.

3. Is it slow?

We haven't make any benchmarks yet. Obviously it's slower than our online web services - but then it's a lot cheaper. On the other hand, performing some sample requests we can say that performance is certainly acceptable; and there is a lot room for improvements - raspberry pis can be easily overclocked from 700 MHz to 1GHz and according to some benchmarks this can give rise to doubling of application speed in some cases. The SD card we used is not the fastest one as well. Finally, all caching is disabled because we wanted to save disk space but using database caching from Django caching framework should give further major improvements - so maybe use the 32 Gb image after all.

Types of request that chempi can be slower on are:

 - Image generation, but if we replace image with JSON from which image can be generated using HTML5 canvas on the client side (the way we generated images in our game) it can be much faster. More about this topic in future blog post.
- Queries using aggregate functions such as COUNT (it seems that we need to optimise our postgres db by adding some more indexes).
- Substructure and similarity search - again, caching, over-clocking and some database and cartridge (choosing faster fingerprints) optimization should solve all the problems. "Premature optimization is a root of all evil", so we first wanted to have a proof of concept that just works, not necessarily works super fast.

4. Can I make my own chempi?

Yes, we are planning to share our SD card image, we will probably use BitTorrent protocol to do this due to image size, and some issues we have faced with distribution of the myChEMBL. We do remember that not everyone has mega-fast broadband!

5. Is chempi useful at all?

Although we think it is interesting as a proof of concept having chemical database on such small and open source hardware, we do think this may have some interesting future real-world applications:

 - plugging our chempi to local network makes it immediately accessible to other computers. So this is a zero configuration demonstration of ChEMBL.
- analogically to the thesis included in this paper, it can encourage cheminformatics education on low cost ARM hardware.
- raspberry can be easily enhanced with camera to perform image recognition. This, combined with software like OSRA can give ability so scan compound images and search them in database.
- adding some e-ink display (for example, jailbroken Kindle?) can produce very interesting small machine...

6. What are some of the technical details?

To deploy our webservices (which are just another Django application) we've used Gunicorn as a server, which in turn connects to NGINX via standard unix pipe. To make it work as a deamon and launch on machine startup, we've used Supervisor. We believe this is ideal way to deploy Django not only on raspberry but on all production machines to if you like to run chembl webservices locally in your company/academia we suggest to do it this way.



Popular posts from this blog

A python client for accessing ChEMBL web services

Motivation The CheMBL Web Services provide simple reliable programmatic access to the data stored in ChEMBL database. RESTful API approaches are quite easy to master in most languages but still require writing a few lines of code. Additionally, it can be a challenging task to write a nontrivial application using REST without any examples. These factors were the motivation for us to write a small client library for accessing web services from Python. Why Python? We choose this language because Python has become extremely popular (and still growing in use) in scientific applications; there are several Open Source chemical toolkits available in this language, and so the wealth of ChEMBL resources and functionality of those toolkits can be easily combined. Moreover, Python is a very web-friendly language and we wanted to show how easy complex resource acquisition can be expressed in Python. Reinventing the wheel? There are already some libraries providing access to ChEMBL d

ChEMBL 29 Released

  We are pleased to announce the release of ChEMBL 29. This version of the database, prepared on 01/07/2021 contains: 2,703,543 compound records 2,105,464 compounds (of which 2,084,724 have mol files) 18,635,916 activities 1,383,553 assays 14,554 targets 81,544 documents Data can be downloaded from the ChEMBL FTP site: .  Please see ChEMBL_29 release notes for full details of all changes in this release: New Deposited Datasets EUbOPEN Chemogenomic Library (src_id = 55, ChEMBL Document IDs CHEMBL4649982-CHEMBL4649998): The EUbOPEN consortium is an Innovative Medicines Initiative (IMI) funded project to enable and unlock biology in the open. The aims of the project are to assemble an open access chemogenomic library comprising about 5,000 well annotated compounds covering roughly 1,000 different proteins, to synthesiz

Identifying relevant compounds in patents

  As you may know, patents can be inherently noisy documents which can make it challenging to extract drug discovery information from them, such as the key targets or compounds being claimed. There are many reasons for this, ranging from deliberate obfuscation through to the long and detailed nature of the documents. For example, a typical small molecule patent may contain extensive background information relating to the target biology and disease area, chemical synthesis information, biological assay protocols and pharmacological measurements (which may refer to endogenous substances, existing therapies, reaction intermediates, reagents and reference compounds), in addition to description of the claimed compounds themselves.  The SureChEMBL system extracts this chemical information from patent documents through recognition of chemical names, conversion of images and extraction of attached files, and allows patents to be searched for chemical structures of interest. However, the curren

Julia meets RDKit

Julia is a young programming language that is getting some traction in the scientific community. It is a dynamically typed, memory safe and high performance JIT compiled language that was designed to replace languages such as Matlab, R and Python. We've been keeping an an eye on it for a while but we were missing something... yes, RDKit! Fortunately, Greg very recently added the MinimalLib CFFI interface to the RDKit repertoire. This is nothing else than a C API that makes it very easy to call RDKit from almost any programming language. More information about the MinimalLib is available directly from the source . The existence of this MinimalLib CFFI interface meant that we no longer had an excuse to not give it a go! First, we added a BinaryBuilder recipe for building RDKit's MinimalLib into Julia's Yggdrasil repository (thanks Mosè for reviewing!). The recipe builds and automatically uploads the library to Julia's general package registry. The build currently targe

New Drug Warnings Browser

As mentioned in the announcement post of  ChEMBL 29 , a new Drug Warnings Browser has been created. This is an updated version of the entity browsers in ChEMBL ( Compounds , Targets , Activities , etc). It contains new features that will be tried out with the Drug Warnings and will be applied to the other entities gradually. The new features of the Drug Warnings Browser are described below. More visible buttons to link to other entities This functionality is already available in the old entity browsers, but the button to use it is not easily recognised. In the new version, the buttons are more visible. By using those buttons, users can see the related activities, compounds, drugs, mechanisms of action and drug indications to the drug warnings selected. The page will take users to the corresponding entity browser with the items related to the ones selected, or to all the items in the dataset if the user didn’t select any. Additionally, the process of creating the join query is no