Skip to main content

Compound Curation - The story so far...

As chemical curator for ChEMBL, I spend a lot of time processing, checking and standardising the compounds in the database. I use various pieces of software for this, but mostly it’s Pipeline Pilot. For those of you who don’t know, Pipeline Pilot is Accelrys’s graphical scientific workflow authoring application, that allows passing hundreds of thousands of compounds through various components to make sure they meet our standards to be loaded into ChEMBL.

However, it’s always incredibly useful to utilise other available software in a complementary manner to see if anything may have been missed, could be done in a different way or just to see what alternative results you can get. One such open source software package is Indigo, created by GGA Software Services. On of the web application developers was passing all of the ChEMBL compounds through the standard Indigo loader, via a Python script, during the course of his work, and found that there were about 9,000 compounds (0.7% of the current database) that failed to be loaded. The list of exceptions was then examined to see where the errors had come from. An important learning here is that different tool kits will throw different exceptions, since these structures were all happy within the PP environment.

The reasons they had failed were as follows:

1. The presence of a wiggly (query) bond
2. Two stereo bonds connected to one chiral centre
This was split into two sections:
Firstly, where the two bonds effectively canceled each other out and no stereochemistry was recorded at that centre.
Secondly, where the stereochemistry was present at that centre but having the two stereo bonds is against IUPAC drawing standards.
3. Presence of a stereo bond when there’s no chiral centre

Some examples of typical scenarios are shown below:

From this Indigo check, I was able to extract and fix these compounds, a lot of which won’t have new standard InChIs, just updated molfiles (i.e. they will keep their CHEMBL ID). For most of these compounds, to confirm the changes that I was going to make, I went back to the original published literature. It is interesting to note that the majority of compounds with the two stereo bonds on a single chiral centre had been extracted exactly as they had been drawn in the paper. 

These changes will be visible in ChEMBL_18 and I am aiming to incorporate this Indigo loader into our standard compound cleanup and loading protocol. This will probably be implemented under the Indigo toolkit extension that is found in Knime.

Any questions or queries about what I have done, please feel free to email:



Popular posts from this blog

A python client for accessing ChEMBL web services

Motivation The CheMBL Web Services provide simple reliable programmatic access to the data stored in ChEMBL database. RESTful API approaches are quite easy to master in most languages but still require writing a few lines of code. Additionally, it can be a challenging task to write a nontrivial application using REST without any examples. These factors were the motivation for us to write a small client library for accessing web services from Python. Why Python? We choose this language because Python has become extremely popular (and still growing in use) in scientific applications; there are several Open Source chemical toolkits available in this language, and so the wealth of ChEMBL resources and functionality of those toolkits can be easily combined. Moreover, Python is a very web-friendly language and we wanted to show how easy complex resource acquisition can be expressed in Python. Reinventing the wheel? There are already some libraries providing access to ChEMBL d

ChEMBL 29 Released

  We are pleased to announce the release of ChEMBL 29. This version of the database, prepared on 01/07/2021 contains: 2,703,543 compound records 2,105,464 compounds (of which 2,084,724 have mol files) 18,635,916 activities 1,383,553 assays 14,554 targets 81,544 documents Data can be downloaded from the ChEMBL FTP site: .  Please see ChEMBL_29 release notes for full details of all changes in this release: New Deposited Datasets EUbOPEN Chemogenomic Library (src_id = 55, ChEMBL Document IDs CHEMBL4649982-CHEMBL4649998): The EUbOPEN consortium is an Innovative Medicines Initiative (IMI) funded project to enable and unlock biology in the open. The aims of the project are to assemble an open access chemogenomic library comprising about 5,000 well annotated compounds covering roughly 1,000 different proteins, to synthesiz

Julia meets RDKit

Julia is a young programming language that is getting some traction in the scientific community. It is a dynamically typed, memory safe and high performance JIT compiled language that was designed to replace languages such as Matlab, R and Python. We've been keeping an an eye on it for a while but we were missing something... yes, RDKit! Fortunately, Greg very recently added the MinimalLib CFFI interface to the RDKit repertoire. This is nothing else than a C API that makes it very easy to call RDKit from almost any programming language. More information about the MinimalLib is available directly from the source . The existence of this MinimalLib CFFI interface meant that we no longer had an excuse to not give it a go! First, we added a BinaryBuilder recipe for building RDKit's MinimalLib into Julia's Yggdrasil repository (thanks Mosè for reviewing!). The recipe builds and automatically uploads the library to Julia's general package registry. The build currently targe

Identifying relevant compounds in patents

  As you may know, patents can be inherently noisy documents which can make it challenging to extract drug discovery information from them, such as the key targets or compounds being claimed. There are many reasons for this, ranging from deliberate obfuscation through to the long and detailed nature of the documents. For example, a typical small molecule patent may contain extensive background information relating to the target biology and disease area, chemical synthesis information, biological assay protocols and pharmacological measurements (which may refer to endogenous substances, existing therapies, reaction intermediates, reagents and reference compounds), in addition to description of the claimed compounds themselves.  The SureChEMBL system extracts this chemical information from patent documents through recognition of chemical names, conversion of images and extraction of attached files, and allows patents to be searched for chemical structures of interest. However, the curren

New Drug Warnings Browser

As mentioned in the announcement post of  ChEMBL 29 , a new Drug Warnings Browser has been created. This is an updated version of the entity browsers in ChEMBL ( Compounds , Targets , Activities , etc). It contains new features that will be tried out with the Drug Warnings and will be applied to the other entities gradually. The new features of the Drug Warnings Browser are described below. More visible buttons to link to other entities This functionality is already available in the old entity browsers, but the button to use it is not easily recognised. In the new version, the buttons are more visible. By using those buttons, users can see the related activities, compounds, drugs, mechanisms of action and drug indications to the drug warnings selected. The page will take users to the corresponding entity browser with the items related to the ones selected, or to all the items in the dataset if the user didn’t select any. Additionally, the process of creating the join query is no