Skip to main content

New Drug Approvals 2011 - Pt. VI Roflumilast (DalirespTM)








ATC code: R03DX07


On February 28th, 2011, the FDA approved Roflumilast (tradename:Daxas tradename:Daliresp NDA 022522) for the treatment of patients with chronic obstructive pulmonary disease (COPD) a chronic and serious disease involving restriction of full lung function. The narrowing of airways of COPD is irreversible, and follows inflammation in the lung, believed to be linked to environmental pollutants such as tobacco smoke, workplace dusts and urban air pollution. This inflammation causes structural damage to the delicate alveoli structures.

Roflumilast and an active metabolite, Roflumilast-N-Oxide, are selective Phosphodiesterase 4 inhibitors. The subfamily of Type 4 Phospodiesterases comprises four distinct members, PDE4A, -4B, -4C, and -4D (Uniprot:P27815, Q07343, Q08493, Q08499, respectively, all are very closely related enzymes containing a characteristic cyclic nucleotide diesterase catalytic domain Pfam:PF00233). These in turn occur in different splicing isoforms with tissue specific expression, many of them in the lung. Phosphodiesterase 4 catalyzes a reaction transforming cyclic 3'-5'-adenosine monophosphate (cAMP, ChEBI: 17489) into adenosine 5'-monophosphate (AMP). Roflumilast has an IC50 against PDE-4 of ca. 2nM, affinities against the PDE4A, PDE4B, and PDE4D isozymes are all similar, whereas affinity against the PDE4C isozyme is ca. 5 fold lower. The exact mechanism by which Roflumilast reduces the risk of COPD exacerbations is not known, but it is believed that an increase in cAMP levels in lung cells attenuates the abnormal inflammation process associated with COPD. In clinical trials, it was observed that the numbers of specific types of immune cells - eosinophils and neutophils - were reduced by 31% and 42% after 4 weeks of treatment with Roflumilast.


Roflumilast ( IUPAC: 3-(cyclopropylmethoxy)-N-(3,5-dichloropyridin-4-yl)-4-(difluoromethoxy)benzamide InChI: 1S/C17H14Cl2F2N2O3/c18-11-6-22-7-12(19)15(11)23-16(24)10-3-4-13(26-17(20)21)14(5-10)25-8-9-1-2-9/h3-7,9,17H,1-2,8H2,(H,22,23,24) SMILES: FC(F)Oc1ccc(cc1OCC2CC2)C(=O)Nc3c(Cl)cncc3Cl Chemspider:395793 ChEMBL:193240) is a synthetic small molecule drug containing no chiral centers. It has a molecular weight of 403.2 Da and calculated LogP of 4.4. Roflumilast has 4 hydrogen bond acceptors and 1 hydrogen bond donor and therefore fully complies with Lipinski's rule of five.

The structure of a number of phosphodiesterase enzymes are known, including a number of PDE4 isoforms, a typical complex of PDE4D with an inhibitor is PDBe:1y2k


Roflumilast's oral bioavailability (at the recommended dose of 500 ug) is approximately 80% and the volume of distribution (Vd) is about 2.9 L.kg-1 and a clearance (CL) of 9.6 L.hr-1. Roflumilast is transformed into an active metabolite, Roflumilast-N-oxide via a metabolic route involving cytochromes CYP1A2 (Uniprot: P05177) and CYP3A4 (Uniprot: P08684). It is the only metabolite observed in humans at relevant plasma concentrations. In-vitro inhibition of Phosphodiesterase 4 by the active metabolite is three times less potent compared to the parent compound. However, its plasma AUC is about 10-fold greater than the plasma AUC of Roflumilast.  Maximum plasma concentrations CMAX of Roflumilast and Roflumilast-N-oxide are reached after 1 hour and eight hours, respectively.  Plasma protein binding (ppb) of the dosed drug and the active metabolite is 99% and 97% respectively. Roflumilast is eliminated primarily through the urine and the drug's half life after oral administration is 17 hours and 30 hours for Roflumilast-N-oxide.

Roflumilast is administered once daily as an oral tablet containing 500 ug of active ingredient (equivalent to 1.2 umol).

The full prescribing information can be found here.

Roflumilast was approved by the European commission in 2010 and is marketed in Europe as Daxas. In the US, Roflumilast will be marketed by Forest Pharmaceuticals under the trade name Daliresp (product website).

Comments

Popular posts from this blog

Here's a nice Christmas gift - ChEMBL 35 is out!

Use your well-deserved Christmas holidays to spend time with your loved ones and explore the new release of ChEMBL 35!            This fresh release comes with a wealth of new data sets and some new data sources as well. Examples include a total of 14 datasets deposited by by the ASAP ( AI-driven Structure-enabled Antiviral Platform) project, a new NTD data se t by Aberystwyth University on anti-schistosome activity, nine new chemical probe data sets, and seven new data sets for the Chemogenomic library of the EUbOPEN project. We also inlcuded a few new fields that do impr ove the provenance and FAIRness of the data we host in ChEMBL:  1) A CONTACT field has been added to the DOCs table which should contain a contact profile of someone willing to be contacted about details of the dataset (ideally an ORCID ID; up to 3 contacts can be provided). 2) In an effort to provide more detailed information about the source of a deposited dat...

Improvements in SureChEMBL's chemistry search and adoption of RDKit

    Dear SureChEMBL users, If you frequently rely on our "chemistry search" feature, today brings great news! We’ve recently implemented a major update that makes your search experience faster than ever. What's New? Last week, we upgraded our structure search engine by aligning it with the core code base used in ChEMBL . This update allows SureChEMBL to leverage our FPSim2 Python package , returning results in approximately one second. The similarity search relies on 256-bit RDKit -calculated ECFP4 fingerprints, and a single instance requires approximately 1 GB of RAM to run. SureChEMBL’s FPSim2 file is not currently available for download, but we are considering generating it periodicaly and have created it once for you to try in Google Colab ! For substructure searches, we now also use an RDKit -based solution via SubstructLibrary , which returns results several times faster than our previous implementation. Additionally, structure search results are now sorted by...

ChEMBL 34 is out!

We are delighted to announce the release of ChEMBL 34, which includes a full update to drug and clinical candidate drug data. This version of the database, prepared on 28/03/2024 contains:         2,431,025 compounds (of which 2,409,270 have mol files)         3,106,257 compound records (non-unique compounds)         20,772,701 activities         1,644,390 assays         15,598 targets         89,892 documents Data can be downloaded from the ChEMBL FTP site:  https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_34/ Please see ChEMBL_34 release notes for full details of all changes in this release:  https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_34/chembl_34_release_notes.txt New Data Sources European Medicines Agency (src_id = 66): European Medicines Agency's data correspond to EMA drugs prior to 20 January 2023 (excluding ...

Improved querying for SureChEMBL

    Dear SureChEMBL users, Earlier this year we ran a survey to identify what you, the users, would like to see next in SureChEMBL. Thank you for offering your feedback! This gave us the opportunity to have some interesting discussions both internally and externally. While we can't publicly reveal precisely our plans for the coming months (everything will be delivered at the right time), we can at least say that improving the compound structure extraction quality is a priority. Unfortunately, the change won't happen overnight as reprocessing 167 millions patents takes a while. However, the good news is that the new generation of optical chemical structure recognition shows good performance, even for patent images! We hope we can share our results with you soon. So in the meantime, what are we doing? You may have noticed a few changes on the SureChEMBL main page. No more "Beta" flag since we consider the system to be stable enough (it does not mean that you will never ...

ChEMBL brings drug bioactivity data to the Protein Data Bank in Europe

In the quest to develop new drugs, understanding the 3D structure of molecules is crucial. Resources like the Protein Data Bank in Europe (PDBe) and the Cambridge Structural Database (CSD) provide these 3D blueprints for many biological molecules. However, researchers also need to know how these molecules interact with their biological target – their bioactivity. ChEMBL is a treasure trove of bioactivity data for countless drug-like molecules. It tells us how strongly a molecule binds to a target, how it affects a biological process, and even how it might be metabolized. But here's the catch: while ChEMBL provides extensive information on a molecule's activity and cross references to other data sources, it doesn't always tell us if a 3D structure is available for a specific drug-target complex. This can be a roadblock for researchers who need that structural information to design effective drugs. Therefore, connecting ChEMBL data with resources like PDBe and CSD is essen...