Skip to main content

A Taxonomy for Drugs: 2 - Stereochemistry


The next area for consideration in our descriptive taxonomy for drugs is stereochemistry. There are many differing types of stereoisomers encountered in general chemistry, and the area is complex, but the majority of these are not relevant for drug discovery; for example atropisomers, although an important effect is not important for among drug substances. The most significant category of stereochemistry for drug like molecules involves chiral centers at sp3 hybridised carbon atoms connected to four chemically distinct atoms (often giving rise to enantiomerism). Another relevant case of stereoisomerism for drugs are diastereoisomers, these are stereoisomers that are not enantiomers, and include cis-/trans- (E-/Z-) configuration of alkenes.

So for Drug_Stereochemistry_Class, a drug can be:
  • Chiral - containing a single defined stereoisomer of the drug substance, and which lacks an internal plane of symmetry.
  • Racemic - containing a mixture of stereoisomers of the drug substance.
  • Achiral - composed of a drug substance that does not display chirality.
  • Other - displaying a physiologically relevant stereochemical property not covered by the classes above.
The vast majority of biological monomers (e.g. amino acids, nucleotides, sugars)  are chiral, and polymers of these are also chiral (so biological drugs and drug targets within the body). So biological drugs are 'chiral', but since it is so ubiquitous for molecules of this class, the convention is to ignore the issue of chirality for biologicals. For small molecule drugs, the importance is more significant, both scientifically and commercially, and several drugs which were initially synthesized and marketed as racemic mixtures, have subsequently been developed in a chirally pure form. An example of this is Omeprazole, which was subsequently replaced by the 'active' S-enantiomer Esomeprazole. By convention, USANs and INNs for chirally distinct forms of a molecule have either ar- as a prefix for R-configuration and es- as a prefix for S-configuration forms. There is no correlation between the +/- labelling and R/S labelling of chirally active molecules. Previously, the USANs/INNs of chirally pure drugs were often denoted with levo- and dextro- prefices.

It is important to note that since drugs tend to interact with chiral receptors, enantiomers will have different binding affinities against a target (or set of targets), metabolic routes, side-effects, half-lives, etc., and so in general there is usually more interest in developing a chirally pure or achiral drug. Chiral centers often add significantly to the synthetic complexity and cost of manufacture of a drug, and so again there are pressures to develop achiral drugs where possible. So as a general rule, achiral drugs are 'preferred' over chiral drugs which in turn are preferred over racemic drugs. There is a fuller discussion of isomerism and drug development here.

Although most chirality in drugs occurs at sp3 carbon atoms, an important and often neglected case is for sulfoxides, where the geometry around the sulphur atom is tetrahedral, and optically active isomers are possible.

For example:

Sildenafil is an achiral drug.
Levodopa is a chiral drug.
Armodafanil is a chiral drug (containing a chiral sulfoxide).
Citalopram is a racemic drug.
Abciximab is a chiral drug.

Comments

jpo said…
Oh, I forgot to say. Enatiomers will have identical physical properties (like logP, logS, etc), diastereoisomers won't.

Popular posts from this blog

ChEMBL 34 is out!

We are delighted to announce the release of ChEMBL 34, which includes a full update to drug and clinical candidate drug data. This version of the database, prepared on 28/03/2024 contains:         2,431,025 compounds (of which 2,409,270 have mol files)         3,106,257 compound records (non-unique compounds)         20,772,701 activities         1,644,390 assays         15,598 targets         89,892 documents Data can be downloaded from the ChEMBL FTP site:  https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_34/ Please see ChEMBL_34 release notes for full details of all changes in this release:  https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_34/chembl_34_release_notes.txt New Data Sources European Medicines Agency (src_id = 66): European Medicines Agency's data correspond to EMA drugs prior to 20 January 2023 (excluding ...

SureChEMBL gets a facelift

    Dear SureChEMBL users, Over the past year, we’ve introduced several updates to the SureChEMBL platform, focusing on improving functionality while maintaining a clean and intuitive design. Even small changes can have a big impact on your experience, and our goal remains the same: to provide high-quality patent annotation with a simple, effective way to find the data you need. What’s Changed? After careful consideration, we’ve redesigned the landing page to make your navigation smoother and more intuitive. From top to bottom: - Announcements Section: Stay up to date with the latest news and updates directly from this blog. Never miss any update! - Enhanced Search Bar: The main search bar is still your go-to for text searches, still with three pre-filter radio buttons to quickly narrow your results without hassle. - Improved Query Assistant: Our query assistant has been redesigned and upgraded to help you craft more precise queries. It now includes five operator options: E...

Improvements in SureChEMBL's chemistry search and adoption of RDKit

    Dear SureChEMBL users, If you frequently rely on our "chemistry search" feature, today brings great news! We’ve recently implemented a major update that makes your search experience faster than ever. What's New? Last week, we upgraded our structure search engine by aligning it with the core code base used in ChEMBL . This update allows SureChEMBL to leverage our FPSim2 Python package , returning results in approximately one second. The similarity search relies on 256-bit RDKit -calculated ECFP4 fingerprints, and a single instance requires approximately 1 GB of RAM to run. SureChEMBL’s FPSim2 file is not currently available for download, but we are considering generating it periodicaly and have created it once for you to try in Google Colab ! For substructure searches, we now also use an RDKit -based solution via SubstructLibrary , which returns results several times faster than our previous implementation. Additionally, structure search results are now sorted by...

Here's a nice Christmas gift - ChEMBL 35 is out!

Use your well-deserved Christmas holidays to spend time with your loved ones and explore the new release of ChEMBL 35!            This fresh release comes with a wealth of new data sets and some new data sources as well. Examples include a total of 14 datasets deposited by by the ASAP ( AI-driven Structure-enabled Antiviral Platform) project, a new NTD data se t by Aberystwyth University on anti-schistosome activity, nine new chemical probe data sets, and seven new data sets for the Chemogenomic library of the EUbOPEN project. We also inlcuded a few new fields that do impr ove the provenance and FAIRness of the data we host in ChEMBL:  1) A CONTACT field has been added to the DOCs table which should contain a contact profile of someone willing to be contacted about details of the dataset (ideally an ORCID ID; up to 3 contacts can be provided). 2) In an effort to provide more detailed information about the source of a deposited dat...

ChEMBL webinar @ School of Chemoinformatics in Latin America

Recently, the ChEMBL team participated in the " School of Chemoinformatics in Latin America " which was kindly organized by José Medina-Franco and Karina Martinez-Mayorga (both at the National Autonomous University of Mexico). The event was very well attended with 1,181 registrants from 79 different countries. 57% of the participants attended from Latin America, 23% from Asia, and around 8% from Africa and Europe, respectively. 52% of the participants were students (undergraduate and graduate students). Distribution by country Distribution by role Participants could learn a bou t the ChEMBL database and UniChem. We covered different topics to answer these questions: • What is ChEMBL and how is it structured ? • Which data does ChEMBL contain ? • How is data extracted from scientic articles ? • How is the data in ChEMBL curated ? • How is drug ...