Skip to main content

New Drug Approvals 2013 - Pt. XXX - Umeclidinium bromide and Vilanterol (Anoro Ellipta™)






ATC codeR03AL03
WikipediaUmeclidinium bromide (and vilanterol)

ChEMBLCHEMBL1187833 (and CHEMBL1198857)

On December 18, 2013, the FDA approved Anoro Ellipta for the once-daily, long-term maintenance treatment of airflow obstruction in patients with obstructive pulmonary disease (COPD). Anoro is a combination of umeclidinium (62.5 mcg - more details below) and vilanterol inhalation powder (25 mcg - already approved in a different formulation). Ellipta is the single inhaler device:



The majority of COPD cases are due to cigarette smoking and this lung disease is a leading cause of death in the United States. Patients affected by COPD experience breathing difficulties worsening with the time as well as chronic cough and chest tightness.


Umeclidinium
Umeclidinium (also known as umeclidinium bromide, GSK573719A and GSK573719) is a small molecule with a molecular weight of 428.6 Da and AlogP of 3.34, 8 rotatable bounds and no Lipinski's rule of five violation.

Molecular formula: C29H34NO2
Canonical SMILES: OC(c1ccccc1)(c2ccccc2)C34CC[N+](CCOCc5ccccc5)(CC3)CC4
Standard InChI: InChI=1S/C29H34NO2/c31-29(26-12-6-2-7-13-26,27-14-8-3-9-15-27)28-16-19-30(20-17-28,21-18-28)22-23-32-24-25-10-4-1-5-11-25/h1-15,31H,16-24H2/q+1
Alternate form of the molecule in ChEMBL: CHEMBL523299

Mechanism of action





Anoro Ellipta relaxes the muscles located around the airways of the lung to increase the airflow in patients. This mechanism of action is mediated via umeclidinium, anticholinergic stopping muscle tightening in combination with vilanterol, a long-acting beta2-adrenergic agonist (LABA).

Safety information

The phase III trials for Anoro Ellipta included seven clinical studies, involving around 6,000 patients with COPD. The mainly reported side-effect were narrowing and obstruction of the respiratory airway (paradoxical bronchospasm), cardiovascular effects, increased pressure in the eyes (acute narrow-angle glaucoma), and worsening of urinary retention.

Note that Anoro Ellipta is not indicated for the treatment of asthma and displays a boxed warning for this indication.

Anoro Ellipta is manufactured by GlaxoSmithKline, Research Triangle Park, N.C.

Comments

Unknown said…
I'd just like to point out that it isn't really correct to say "Umeclidinium (also known as umeclidinium bromide...". One is the name of a specific salt, and the other is the name of one of the parent ions. It's a bit like saying "Cheese, also known as a cheese sandwich". Perhaps you mean "Umeclidinium (commonly used as its bromide salt: umeclidinium bromide..." or similar?
I realise I'm being a bit picky here (and aploogise in that respect) but I spend quie a lot of time trying to clean up data that is based on similar cases where salts are mis-labelled as salts (and vice-versa).

Popular posts from this blog

Improvements in SureChEMBL's chemistry search and adoption of RDKit

    Dear SureChEMBL users, If you frequently rely on our "chemistry search" feature, today brings great news! We’ve recently implemented a major update that makes your search experience faster than ever. What's New? Last week, we upgraded our structure search engine by aligning it with the core code base used in ChEMBL . This update allows SureChEMBL to leverage our FPSim2 Python package , returning results in approximately one second. The similarity search relies on 256-bit RDKit -calculated ECFP4 fingerprints, and a single instance requires approximately 1 GB of RAM to run. SureChEMBL’s FPSim2 file is not currently available for download, but we are considering generating it periodicaly and have created it once for you to try in Google Colab ! For substructure searches, we now also use an RDKit -based solution via SubstructLibrary , which returns results several times faster than our previous implementation. Additionally, structure search results are now sorted by...

Improved querying for SureChEMBL

    Dear SureChEMBL users, Earlier this year we ran a survey to identify what you, the users, would like to see next in SureChEMBL. Thank you for offering your feedback! This gave us the opportunity to have some interesting discussions both internally and externally. While we can't publicly reveal precisely our plans for the coming months (everything will be delivered at the right time), we can at least say that improving the compound structure extraction quality is a priority. Unfortunately, the change won't happen overnight as reprocessing 167 millions patents takes a while. However, the good news is that the new generation of optical chemical structure recognition shows good performance, even for patent images! We hope we can share our results with you soon. So in the meantime, what are we doing? You may have noticed a few changes on the SureChEMBL main page. No more "Beta" flag since we consider the system to be stable enough (it does not mean that you will never ...

ChEMBL 34 is out!

We are delighted to announce the release of ChEMBL 34, which includes a full update to drug and clinical candidate drug data. This version of the database, prepared on 28/03/2024 contains:         2,431,025 compounds (of which 2,409,270 have mol files)         3,106,257 compound records (non-unique compounds)         20,772,701 activities         1,644,390 assays         15,598 targets         89,892 documents Data can be downloaded from the ChEMBL FTP site:  https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_34/ Please see ChEMBL_34 release notes for full details of all changes in this release:  https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_34/chembl_34_release_notes.txt New Data Sources European Medicines Agency (src_id = 66): European Medicines Agency's data correspond to EMA drugs prior to 20 January 2023 (excluding ...

ChEMBL brings drug bioactivity data to the Protein Data Bank in Europe

In the quest to develop new drugs, understanding the 3D structure of molecules is crucial. Resources like the Protein Data Bank in Europe (PDBe) and the Cambridge Structural Database (CSD) provide these 3D blueprints for many biological molecules. However, researchers also need to know how these molecules interact with their biological target – their bioactivity. ChEMBL is a treasure trove of bioactivity data for countless drug-like molecules. It tells us how strongly a molecule binds to a target, how it affects a biological process, and even how it might be metabolized. But here's the catch: while ChEMBL provides extensive information on a molecule's activity and cross references to other data sources, it doesn't always tell us if a 3D structure is available for a specific drug-target complex. This can be a roadblock for researchers who need that structural information to design effective drugs. Therefore, connecting ChEMBL data with resources like PDBe and CSD is essen...

In search of the perfect assay description

Credit: Science biotech, CC BY-SA 4.0 Assays des cribe the experimental set-up when testing the activity of drug-like compounds against biological targets; they provide useful context for researchers interested in drug-target relationships. Ver sion 33 of ChEMBL contains 1.6 million diverse assays spanning ADMET, physicochemical, binding, functional and toxicity experiments. A set of well-defined and structured assay descriptions would be valuable for the drug discovery community, particularly for text mining and NLP projects. These would also support ChEMBL's ongoing efforts towards an  in vitro  assay classification. This Blog post will consider the features of the 'perfect' assay description and provide a guide for depositors on the submission of high quality data. ChEMBL's assays are typically structured with the overall aim, target, and method .  The ideal assay description is succinct but contains all the necessary information for easy interpretation by database u...