Skip to main content

Visitor Talk - Jens Loesel - MedChem Attractiveness and Redundancy - Looking for value in Compounds and Chemical Space

We have a visitor to the EBI on 6th April 2011 - Jens Loesel from Pfizer, Sandwich. Jens will give a talk at 1pm on some large-scale cheminformatics analysis of the Pfizer screening file that he has done. If any off campus people want to come to the talk, they are very welcome; but I will need a name and affiliation to get them past security - mail me. An abstract for the talk is below....

MedChem Attractiveness and Redundancy - 
Looking for value in Compounds and Chemical Space
Jen Loesel, Pfizer


A more diverse screening file is a better screening file. A bigger screening file is a better screening file. Are these statements really true? We will critically scrutinize both these questions in the talk.
In part 1 we will investigate the quality of chemical structures. A good screening file needs to balance quality versus diversity.

We generated an algorithm that is purely based on structure to achieve this. The algorithm is able to compete with medicinal chemists in ranking the attractiveness of compounds as defined by the consensus opinion of multiple chemists. We called the score MedChem Attractiveness (MCA ). The score is an important step towards quantifying the quality of chemical structures. The score complements existing algorithms for novelty and diversity as well as filters like the Ro5.

In part 2 of the talk we look at the size and economy of the screening file. The value of the whole screening file isn’t simply the sum of all its individual compounds. There is a limit at which a screening file becomes too big and costly for the aim it tries to solve – finding new leads for novel MedChem projects in an efficient manner?

Primary screens at Pfizer often yield large numbers of very similar hit compounds. These large clusters of active compounds represent limited value for Hit Identification beyond the first few active members. To streamline our screening operation we analysed the probability of finding actives in recent HTS screens based on fingerprint similarity. We combined the results from the HTS analysis with Belief Theory. This allowed us to define the ideal density of neigbours in chemical space for lead identification. Based on that density we defined a new property of the chemical space we call Redundancy. Redundancy represents the fraction of compounds populating chemical space beyond the ideal density for efficient Hit Identification screening.

This work was no academic exercise. The model resulted in the permanent deletion of >1 million compounds from the screening file. The result is a higher quality and more efficient Pfizer screening file for the future. Both algorithms are very generic and can be applied or adapted to a variety of other uses.

Comments

Popular posts from this blog

A python client for accessing ChEMBL web services

Motivation The CheMBL Web Services provide simple reliable programmatic access to the data stored in ChEMBL database. RESTful API approaches are quite easy to master in most languages but still require writing a few lines of code. Additionally, it can be a challenging task to write a nontrivial application using REST without any examples. These factors were the motivation for us to write a small client library for accessing web services from Python. Why Python? We choose this language because Python has become extremely popular (and still growing in use) in scientific applications; there are several Open Source chemical toolkits available in this language, and so the wealth of ChEMBL resources and functionality of those toolkits can be easily combined. Moreover, Python is a very web-friendly language and we wanted to show how easy complex resource acquisition can be expressed in Python. Reinventing the wheel? There are already some libraries providing access to ChEMBL d

ChEMBL 29 Released

  We are pleased to announce the release of ChEMBL 29. This version of the database, prepared on 01/07/2021 contains: 2,703,543 compound records 2,105,464 compounds (of which 2,084,724 have mol files) 18,635,916 activities 1,383,553 assays 14,554 targets 81,544 documents Data can be downloaded from the ChEMBL FTP site:   https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_29 .  Please see ChEMBL_29 release notes for full details of all changes in this release: https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_29/chembl_29_release_notes.txt New Deposited Datasets EUbOPEN Chemogenomic Library (src_id = 55, ChEMBL Document IDs CHEMBL4649982-CHEMBL4649998): The EUbOPEN consortium is an Innovative Medicines Initiative (IMI) funded project to enable and unlock biology in the open. The aims of the project are to assemble an open access chemogenomic library comprising about 5,000 well annotated compounds covering roughly 1,000 different proteins, to synthesiz

Identifying relevant compounds in patents

  As you may know, patents can be inherently noisy documents which can make it challenging to extract drug discovery information from them, such as the key targets or compounds being claimed. There are many reasons for this, ranging from deliberate obfuscation through to the long and detailed nature of the documents. For example, a typical small molecule patent may contain extensive background information relating to the target biology and disease area, chemical synthesis information, biological assay protocols and pharmacological measurements (which may refer to endogenous substances, existing therapies, reaction intermediates, reagents and reference compounds), in addition to description of the claimed compounds themselves.  The SureChEMBL system extracts this chemical information from patent documents through recognition of chemical names, conversion of images and extraction of attached files, and allows patents to be searched for chemical structures of interest. However, the curren

Julia meets RDKit

Julia is a young programming language that is getting some traction in the scientific community. It is a dynamically typed, memory safe and high performance JIT compiled language that was designed to replace languages such as Matlab, R and Python. We've been keeping an an eye on it for a while but we were missing something... yes, RDKit! Fortunately, Greg very recently added the MinimalLib CFFI interface to the RDKit repertoire. This is nothing else than a C API that makes it very easy to call RDKit from almost any programming language. More information about the MinimalLib is available directly from the source . The existence of this MinimalLib CFFI interface meant that we no longer had an excuse to not give it a go! First, we added a BinaryBuilder recipe for building RDKit's MinimalLib into Julia's Yggdrasil repository (thanks Mosè for reviewing!). The recipe builds and automatically uploads the library to Julia's general package registry. The build currently targe

New Drug Warnings Browser

As mentioned in the announcement post of  ChEMBL 29 , a new Drug Warnings Browser has been created. This is an updated version of the entity browsers in ChEMBL ( Compounds , Targets , Activities , etc). It contains new features that will be tried out with the Drug Warnings and will be applied to the other entities gradually. The new features of the Drug Warnings Browser are described below. More visible buttons to link to other entities This functionality is already available in the old entity browsers, but the button to use it is not easily recognised. In the new version, the buttons are more visible. By using those buttons, users can see the related activities, compounds, drugs, mechanisms of action and drug indications to the drug warnings selected. The page will take users to the corresponding entity browser with the items related to the ones selected, or to all the items in the dataset if the user didn’t select any. Additionally, the process of creating the join query is no