Skip to main content

Visitor Talk - Jens Loesel - MedChem Attractiveness and Redundancy - Looking for value in Compounds and Chemical Space

We have a visitor to the EBI on 6th April 2011 - Jens Loesel from Pfizer, Sandwich. Jens will give a talk at 1pm on some large-scale cheminformatics analysis of the Pfizer screening file that he has done. If any off campus people want to come to the talk, they are very welcome; but I will need a name and affiliation to get them past security - mail me. An abstract for the talk is below....

MedChem Attractiveness and Redundancy - 
Looking for value in Compounds and Chemical Space
Jen Loesel, Pfizer


A more diverse screening file is a better screening file. A bigger screening file is a better screening file. Are these statements really true? We will critically scrutinize both these questions in the talk.
In part 1 we will investigate the quality of chemical structures. A good screening file needs to balance quality versus diversity.

We generated an algorithm that is purely based on structure to achieve this. The algorithm is able to compete with medicinal chemists in ranking the attractiveness of compounds as defined by the consensus opinion of multiple chemists. We called the score MedChem Attractiveness (MCA ). The score is an important step towards quantifying the quality of chemical structures. The score complements existing algorithms for novelty and diversity as well as filters like the Ro5.

In part 2 of the talk we look at the size and economy of the screening file. The value of the whole screening file isn’t simply the sum of all its individual compounds. There is a limit at which a screening file becomes too big and costly for the aim it tries to solve – finding new leads for novel MedChem projects in an efficient manner?

Primary screens at Pfizer often yield large numbers of very similar hit compounds. These large clusters of active compounds represent limited value for Hit Identification beyond the first few active members. To streamline our screening operation we analysed the probability of finding actives in recent HTS screens based on fingerprint similarity. We combined the results from the HTS analysis with Belief Theory. This allowed us to define the ideal density of neigbours in chemical space for lead identification. Based on that density we defined a new property of the chemical space we call Redundancy. Redundancy represents the fraction of compounds populating chemical space beyond the ideal density for efficient Hit Identification screening.

This work was no academic exercise. The model resulted in the permanent deletion of >1 million compounds from the screening file. The result is a higher quality and more efficient Pfizer screening file for the future. Both algorithms are very generic and can be applied or adapted to a variety of other uses.

Comments

Popular posts from this blog

Improvements in SureChEMBL's chemistry search and adoption of RDKit

    Dear SureChEMBL users, If you frequently rely on our "chemistry search" feature, today brings great news! We’ve recently implemented a major update that makes your search experience faster than ever. What's New? Last week, we upgraded our structure search engine by aligning it with the core code base used in ChEMBL . This update allows SureChEMBL to leverage our FPSim2 Python package , returning results in approximately one second. The similarity search relies on 256-bit RDKit -calculated ECFP4 fingerprints, and a single instance requires approximately 1 GB of RAM to run. SureChEMBL’s FPSim2 file is not currently available for download, but we are considering generating it periodicaly and have created it once for you to try in Google Colab ! For substructure searches, we now also use an RDKit -based solution via SubstructLibrary , which returns results several times faster than our previous implementation. Additionally, structure search results are now sorted by

Improved querying for SureChEMBL

    Dear SureChEMBL users, Earlier this year we ran a survey to identify what you, the users, would like to see next in SureChEMBL. Thank you for offering your feedback! This gave us the opportunity to have some interesting discussions both internally and externally. While we can't publicly reveal precisely our plans for the coming months (everything will be delivered at the right time), we can at least say that improving the compound structure extraction quality is a priority. Unfortunately, the change won't happen overnight as reprocessing 167 millions patents takes a while. However, the good news is that the new generation of optical chemical structure recognition shows good performance, even for patent images! We hope we can share our results with you soon. So in the meantime, what are we doing? You may have noticed a few changes on the SureChEMBL main page. No more "Beta" flag since we consider the system to be stable enough (it does not mean that you will never

ChEMBL brings drug bioactivity data to the Protein Data Bank in Europe

In the quest to develop new drugs, understanding the 3D structure of molecules is crucial. Resources like the Protein Data Bank in Europe (PDBe) and the Cambridge Structural Database (CSD) provide these 3D blueprints for many biological molecules. However, researchers also need to know how these molecules interact with their biological target – their bioactivity. ChEMBL is a treasure trove of bioactivity data for countless drug-like molecules. It tells us how strongly a molecule binds to a target, how it affects a biological process, and even how it might be metabolized. But here's the catch: while ChEMBL provides extensive information on a molecule's activity and cross references to other data sources, it doesn't always tell us if a 3D structure is available for a specific drug-target complex. This can be a roadblock for researchers who need that structural information to design effective drugs. Therefore, connecting ChEMBL data with resources like PDBe and CSD is essen

ChEMBL 34 is out!

We are delighted to announce the release of ChEMBL 34, which includes a full update to drug and clinical candidate drug data. This version of the database, prepared on 28/03/2024 contains:         2,431,025 compounds (of which 2,409,270 have mol files)         3,106,257 compound records (non-unique compounds)         20,772,701 activities         1,644,390 assays         15,598 targets         89,892 documents Data can be downloaded from the ChEMBL FTP site:  https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_34/ Please see ChEMBL_34 release notes for full details of all changes in this release:  https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_34/chembl_34_release_notes.txt New Data Sources European Medicines Agency (src_id = 66): European Medicines Agency's data correspond to EMA drugs prior to 20 January 2023 (excluding vaccines). 71 out of the 882 newly added EMA drugs are only authorised by EMA, rather than from other regulatory bodies e.g.

In search of the perfect assay description

Credit: Science biotech, CC BY-SA 4.0 Assays des cribe the experimental set-up when testing the activity of drug-like compounds against biological targets; they provide useful context for researchers interested in drug-target relationships. Ver sion 33 of ChEMBL contains 1.6 million diverse assays spanning ADMET, physicochemical, binding, functional and toxicity experiments. A set of well-defined and structured assay descriptions would be valuable for the drug discovery community, particularly for text mining and NLP projects. These would also support ChEMBL's ongoing efforts towards an  in vitro  assay classification. This Blog post will consider the features of the 'perfect' assay description and provide a guide for depositors on the submission of high quality data. ChEMBL's assays are typically structured with the overall aim, target, and method .  The ideal assay description is succinct but contains all the necessary information for easy interpretation by database u