Skip to main content

ChEMBL_15 Released

We are pleased to announce the release of ChEMBL_15. This version of the database was prepared on 23rd January 2013 and contains:

1,434,432 compound records
1,254,575 compounds (of which 1,251,913 have mol files)
10,509,572 activities
679,259 assays
9,570 targets
48,735 documents
17 activity data sources

You can download the data from the ChEMBL ftpsite:

Please see chembl_15_release_notes.txt for full details of all changes in this release, including important schema changes!

Data changes since the last release:
We have made several major changes/additions to the data in ChEMBL_15:

  • Incorporation of data from the USP Dictionary of USAN and International Drug Names.
  • Incorporation of monoclonal antibody clinical candidates and sequences.
  • Creation of targets for protein complexes and protein families.
  • Standardisation of activity data and identification of potential issues.
  • Annotation of predicted compound binding domains for subset of activity data.

These data sets are described in more detail in the release notes and will also be the subject of future blog posts. In addition, we have incorporated new data from the following sources:

  • Open TG-GATEs
  • TP-search transporter database
  • MMV Malaria Box screening data
  • GSK Tuberculosis screening data
  • GSK deposited supplementary data
  • DNDi Trypanosoma brucei screening data
  • Harvard malaria screening data
  • WHO-TDR malaria screening data

Database changes since the last release:
This release of ChEMBL contains major changes to the schema and data model, particularly around the representation of protein targets. 

Please see the release notes, ERD and schema documentation for more details of these changes. We will also run a series of webinars over the coming weeks, describing the new schema and the changes.

Interface changes since the last release:
New data tables have been introduced to display search results and bioactivity data. These tables allow users to customise the display and choose which columns they want to include. By default, a standard set of columns are included in the view, but additional columns can be added by clicking on the show/hide button above the table.

A BLAST search for biotherapeutic drugs has been included on the 'Ligand Search' tab (formerly 'compound search'), allowing retrieval of protein drugs by sequence similarity.

The 'Browse Drugs' tab now includes information for monoclonal antibody clinical candidates and compounds with USANs in addition to approved drugs. Additional fields have been added and drug icons have been divided into two sets representing structure-specific information (green) and product-specific information (blue) - the latter are shown only for approved drugs.

(btw the picture above is built from ChEMBL assay descriptions - thanks to George)


Popular posts from this blog

A python client for accessing ChEMBL web services

Motivation The CheMBL Web Services provide simple reliable programmatic access to the data stored in ChEMBL database. RESTful API approaches are quite easy to master in most languages but still require writing a few lines of code. Additionally, it can be a challenging task to write a nontrivial application using REST without any examples. These factors were the motivation for us to write a small client library for accessing web services from Python. Why Python? We choose this language because Python has become extremely popular (and still growing in use) in scientific applications; there are several Open Source chemical toolkits available in this language, and so the wealth of ChEMBL resources and functionality of those toolkits can be easily combined. Moreover, Python is a very web-friendly language and we wanted to show how easy complex resource acquisition can be expressed in Python. Reinventing the wheel? There are already some libraries providing access to ChEMBL d

ChEMBL 29 Released

  We are pleased to announce the release of ChEMBL 29. This version of the database, prepared on 01/07/2021 contains: 2,703,543 compound records 2,105,464 compounds (of which 2,084,724 have mol files) 18,635,916 activities 1,383,553 assays 14,554 targets 81,544 documents Data can be downloaded from the ChEMBL FTP site: .  Please see ChEMBL_29 release notes for full details of all changes in this release: New Deposited Datasets EUbOPEN Chemogenomic Library (src_id = 55, ChEMBL Document IDs CHEMBL4649982-CHEMBL4649998): The EUbOPEN consortium is an Innovative Medicines Initiative (IMI) funded project to enable and unlock biology in the open. The aims of the project are to assemble an open access chemogenomic library comprising about 5,000 well annotated compounds covering roughly 1,000 different proteins, to synthesiz

Identifying relevant compounds in patents

  As you may know, patents can be inherently noisy documents which can make it challenging to extract drug discovery information from them, such as the key targets or compounds being claimed. There are many reasons for this, ranging from deliberate obfuscation through to the long and detailed nature of the documents. For example, a typical small molecule patent may contain extensive background information relating to the target biology and disease area, chemical synthesis information, biological assay protocols and pharmacological measurements (which may refer to endogenous substances, existing therapies, reaction intermediates, reagents and reference compounds), in addition to description of the claimed compounds themselves.  The SureChEMBL system extracts this chemical information from patent documents through recognition of chemical names, conversion of images and extraction of attached files, and allows patents to be searched for chemical structures of interest. However, the curren

Julia meets RDKit

Julia is a young programming language that is getting some traction in the scientific community. It is a dynamically typed, memory safe and high performance JIT compiled language that was designed to replace languages such as Matlab, R and Python. We've been keeping an an eye on it for a while but we were missing something... yes, RDKit! Fortunately, Greg very recently added the MinimalLib CFFI interface to the RDKit repertoire. This is nothing else than a C API that makes it very easy to call RDKit from almost any programming language. More information about the MinimalLib is available directly from the source . The existence of this MinimalLib CFFI interface meant that we no longer had an excuse to not give it a go! First, we added a BinaryBuilder recipe for building RDKit's MinimalLib into Julia's Yggdrasil repository (thanks Mosè for reviewing!). The recipe builds and automatically uploads the library to Julia's general package registry. The build currently targe

New Drug Warnings Browser

As mentioned in the announcement post of  ChEMBL 29 , a new Drug Warnings Browser has been created. This is an updated version of the entity browsers in ChEMBL ( Compounds , Targets , Activities , etc). It contains new features that will be tried out with the Drug Warnings and will be applied to the other entities gradually. The new features of the Drug Warnings Browser are described below. More visible buttons to link to other entities This functionality is already available in the old entity browsers, but the button to use it is not easily recognised. In the new version, the buttons are more visible. By using those buttons, users can see the related activities, compounds, drugs, mechanisms of action and drug indications to the drug warnings selected. The page will take users to the corresponding entity browser with the items related to the ones selected, or to all the items in the dataset if the user didn’t select any. Additionally, the process of creating the join query is no