Skip to main content

New Drug Approvals 2012 - Pt. XXXIII - Apixaban (ELIQUIS®)


ATC code : B01AF02
Wikipedia : Apixaban

On December 28, FDA approved Apixaban (Trade Name: ELIQUIS®; ChEMBLCHEMBL231779KEGGD03213; ChemSpider8358471; DrugBankDB07828; PubChemCID 10182969) as an anticoagulant for prevention of venous thromboembolism and related events, indicated to reduce the risk of stroke and systemic embolism in patients with non-valvular atrial fibrillation. 

Atrial fibrillation (AF) is most common cardiac arrhythmia (irregular heart beat). There are many classes of AF according to American College of Cardiology (ACC), American Heart Association (AHA) and the European Society of Cardiology (ESC) one of which is non-valvular AF - absence of rheumatic mitral valve disease, a prosthetic heart valve, or mitral valve repair (AF which not caused by a heart valve problem). Usually AF increases the degree of stroke risk, can be up to seven times that of the average population. AF is one of the major cardiogenic risk factors for stroke. For instance, patients with inappropriate or abnormal blood clotting (coagulation disorder) will result in clot formation in heart which can easily find their way into the brain, resulting in stroke.

Coagulation (thrombogenesis) is the process by which blood forms clots. Coagulation cascade has two pathways which lead to fibrin formation, they are intrinsic pathway and extrinsic pathway. The pathways are a series of reactions, in which a zymogen of a serine protease and its glycoprotein co-factor are activated to become active components that then catalyze the next reaction in the cascade, ultimately resulting in cross-linked fibrin. Apixaban belongs to Direct factor Xa inhibitors ('xabans') class of anticoagulant drugs, which directly acts on Factor X (FX) in the coagulation cascade without antithrombin as mediator. 

Apixaban is reversible and selective active site inhibitor of Factor Xa (FXa) . It does not require antithrombin III for antithrombotic activity. Apixaban inhibits free and clot-bound FXa, and prothrombinase activity. Apixaban has no direct effect on platelet aggregation, but indirectly inhibits platelet aggregation induced by thrombin. By inhibiting FXa, apixaban decreases thrombin generation and thrombus development.


The PDBe entry (PDBe : 2p16) for the crystal structure for human Factor X (chain A & chain L) in complex with Apixaban (blue-green - molecule shaped) is shown above.


IUPAC Name : 1-(4-methoxyphenyl)-7-oxo-6-[4-(2-oxopiperidin-1-yl)phenyl]-4,5,6,7-tetrahydro-1H-pyrazolo[3,4-c]pyridine-3-carboxamide
Canonical SMILES : COc1ccc(cc1)n2nc(C(=O)N)c3CCN(C(=O)c23)c4ccc(cc4)N5CCCCC5=O
Standard InChI : 1S/C25H25N5O4/c1-34-19-11-9-18(10-12-19)30-23-20(22(27-30)24(26)32)13-15-29(25(23)33)17-7-5-16(6-8-17)28-14-3-2-4-21(28)31/h5-12H,2-4,13-15H2,1H3,(H2,26,32)
Standard InChI Key : QNZCBYKSOIHPEH-UHFFFAOYSA-N

Apixaban is available for oral administration at doses of 2.5 mg and 5 mg. It displays prolonged absorption with bioavailability of ~50% for doses up to 10 mg. Plasma protein binding was estimated to be ~87% and Vss is ~21 liters. Apixaban is metabolized by mainly via CYP3A4 with minor contributions from CYP1A2, CYP2C8, CYP2C9, CYP2C19 and CYP2J2. Approximately 25% of Apixaban is recovered in urine and faeces. Despite a short clearance half-life about 6 hrs, apparent half-life is 12 hrs, due to prolonged absorption phase; renal excretion accounts to 27% of the clearance.

Apixaban comes with a boxed warning for risks and remedies while discontinuing drug. There is one other direct factor Xa inhibitor approved by FDA in 2011, Rivaroxaban (ChEMBL : CHEMBL198362, ATC code  : B01AX06, PubChem : CID6433119), was "first in class" FXa inhibitor (can be accessed by one of our old blog posts, here) which had similar boxed warning along with spinal/epidural hematoma in surgical settings.

The license holder is Bristol-Myers Squibb, and the product website is www.eliquisglobal.com.

Full prescribing information can be found here.

Ramesh

Comments

Popular posts from this blog

ChEMBL 34 is out!

We are delighted to announce the release of ChEMBL 34, which includes a full update to drug and clinical candidate drug data. This version of the database, prepared on 28/03/2024 contains:         2,431,025 compounds (of which 2,409,270 have mol files)         3,106,257 compound records (non-unique compounds)         20,772,701 activities         1,644,390 assays         15,598 targets         89,892 documents Data can be downloaded from the ChEMBL FTP site:  https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_34/ Please see ChEMBL_34 release notes for full details of all changes in this release:  https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_34/chembl_34_release_notes.txt New Data Sources European Medicines Agency (src_id = 66): European Medicines Agency's data correspond to EMA drugs prior to 20 January 2023 (excluding vaccines). 71 out of the 882 newly added EMA drugs are only authorised by EMA, rather than from other regulatory bodies e.g.

New SureChEMBL announcement

(Generated with DALL-E 3 ∙ 30 October 2023 at 1:48 pm) We have some very exciting news to report: the new SureChEMBL is now available! Hooray! What is SureChEMBL, you may ask. Good question! In our portfolio of chemical biology services, alongside our established database of bioactivity data for drug-like molecules ChEMBL , our dictionary of annotated small molecule entities ChEBI , and our compound cross-referencing system UniChem , we also deliver a database of annotated patents! Almost 10 years ago , EMBL-EBI acquired the SureChem system of chemically annotated patents and made this freely accessible in the public domain as SureChEMBL. Since then, our team has continued to maintain and deliver SureChEMBL. However, this has become increasingly challenging due to the complexities of the underlying codebase. We were awarded a Wellcome Trust grant in 2021 to completely overhaul SureChEMBL, with a new UI, backend infrastructure, and new f

Accessing SureChEMBL data in bulk

It is the peak of the summer (at least in this hemisphere) and many of our readers/users will be on holiday, perhaps on an island enjoying the sea. Luckily, for the rest of us there is still the 'sea' of SureChEMBL data that awaits to be enjoyed and explored for hidden 'treasures' (let me know if I pushed this analogy too far). See here and  here for a reminder of SureChEMBL is and what it does.  This wealth of (big) data can be accessed via the SureChEMBL interface , where users can submit quite sophisticated and granular queries by combining: i) Lucene fields against full-text and bibliographic metadata and ii) advanced structure query features against the annotated compound corpus. Examples of such queries will be the topic of a future post. Once the search results are back, users can browse through and export the chemistry from the patent(s) of interest. In addition to this functionality, we've been receiving user requests for  local (behind the