Skip to main content

New Drug Approvals 2012 - Pt. XXXIV - RaxibacumabTM



ATC Code:
Wikipedia: Raxibacumab

On December 14th 2012 the FDA approved Raxibacumab for the treatment of inhalation anthrax, a form of anthrax caused by the inhalation of anthrax spores. The drug is also approved to treat inhalation anthrax when alternative therapies are not available or appropriate. Raxibacumab is a 146 kDa monoclonal antibody that is designed to neutralize the toxin secreted by Bacillus Anthracis. The FDA granted raxibacumab fast track designation, priority review, and orphan product designation.

Bacillus Anthracis toxin (Anthrax toxin) is a secreted three protein exotoxin. It consists of two enzyme components; lethal factor (LF, PDB 1PWU), a bacterial endopeptidase and edema factor (EF, PDB 1PWW), a bacterial adenylate cyclase. These are combined with one cell-binding protein; protective antigen (PA, PDB 1ACC). The individual components are non toxic and the combination of the enzyme components with the cell-binding protein makes them toxic. PA, in the form of a 83kDa protein, binds to the Anthrax Toxin receptor. Upon binding a 20kDa fragment is cleaved of the protein. The remaining protein (PA63) self assembles into a ring shaped oligomer. This oligomer acts as a pore precursor through which the enzymatic components enter the cell. EF, an 88kDa protein, acts as a Ca2+ and calmodulin dependant adenylate cyclase, raising cAMP levels (up to 200 fold in CHO cells) and disturbing water homeostasis in the cell. In turn disturbing signaling pathways and immune function. LF,  an 89kDa protein, is a Zn2+ dependant endopeptidase. The protein cleaves mitogen-activated proten kinase kinases (MAPKKs). This leads to altered signalling pathways and apoptosis. 





(Image adapted from http://www.kesimpulan.com)

Raxibacumab, efficacy has not been tested in humans but instead in monkey's and rabbit's for ethical reasons. Safety trials were conducted in 326 healthy human volunteers.  

Raxibacumab is available as a single-use vial which contains 1700 mg/34 mL (50 mg/mL) raxibacumab injection. Raxibacumab is administered as a single dose of 40 mg/kg intravenously over 2 hours and 15 minutes after dilution in 0.9% Sodium Chloride Injection, USP (normal saline) to a final volume of 250 mL. 

The PK of raxibacumab are linear over the dose range of 1 to 40 mg/kg following single IV dosing in humans. Following single IV administration of raxibacumab 40 mg/kg in healthy, male and female human subjects, the mean Cmax  and AUCinf were 1020.3 ± 140.6 mcg/mL and 15845.8 ± 4333.5 mcg·day/mL, respectively. Mean raxibacumab steady-state volume of distribution was greater than plasma volume, suggesting some tissue distribution. Clearance values were much smaller than the glomerular filtration rate indicating that there is virtually no renal clearance of raxibacumab. 

The license holder is GlaxoSmithKline and the prescribing information can be found here.

Comments

Popular posts from this blog

A python client for accessing ChEMBL web services

Motivation The CheMBL Web Services provide simple reliable programmatic access to the data stored in ChEMBL database. RESTful API approaches are quite easy to master in most languages but still require writing a few lines of code. Additionally, it can be a challenging task to write a nontrivial application using REST without any examples. These factors were the motivation for us to write a small client library for accessing web services from Python. Why Python? We choose this language because Python has become extremely popular (and still growing in use) in scientific applications; there are several Open Source chemical toolkits available in this language, and so the wealth of ChEMBL resources and functionality of those toolkits can be easily combined. Moreover, Python is a very web-friendly language and we wanted to show how easy complex resource acquisition can be expressed in Python. Reinventing the wheel? There are already some libraries providing access to ChEMBL d

ChEMBL 29 Released

  We are pleased to announce the release of ChEMBL 29. This version of the database, prepared on 01/07/2021 contains: 2,703,543 compound records 2,105,464 compounds (of which 2,084,724 have mol files) 18,635,916 activities 1,383,553 assays 14,554 targets 81,544 documents Data can be downloaded from the ChEMBL FTP site:   https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_29 .  Please see ChEMBL_29 release notes for full details of all changes in this release: https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_29/chembl_29_release_notes.txt New Deposited Datasets EUbOPEN Chemogenomic Library (src_id = 55, ChEMBL Document IDs CHEMBL4649982-CHEMBL4649998): The EUbOPEN consortium is an Innovative Medicines Initiative (IMI) funded project to enable and unlock biology in the open. The aims of the project are to assemble an open access chemogenomic library comprising about 5,000 well annotated compounds covering roughly 1,000 different proteins, to synthesiz

Identifying relevant compounds in patents

  As you may know, patents can be inherently noisy documents which can make it challenging to extract drug discovery information from them, such as the key targets or compounds being claimed. There are many reasons for this, ranging from deliberate obfuscation through to the long and detailed nature of the documents. For example, a typical small molecule patent may contain extensive background information relating to the target biology and disease area, chemical synthesis information, biological assay protocols and pharmacological measurements (which may refer to endogenous substances, existing therapies, reaction intermediates, reagents and reference compounds), in addition to description of the claimed compounds themselves.  The SureChEMBL system extracts this chemical information from patent documents through recognition of chemical names, conversion of images and extraction of attached files, and allows patents to be searched for chemical structures of interest. However, the curren

Julia meets RDKit

Julia is a young programming language that is getting some traction in the scientific community. It is a dynamically typed, memory safe and high performance JIT compiled language that was designed to replace languages such as Matlab, R and Python. We've been keeping an an eye on it for a while but we were missing something... yes, RDKit! Fortunately, Greg very recently added the MinimalLib CFFI interface to the RDKit repertoire. This is nothing else than a C API that makes it very easy to call RDKit from almost any programming language. More information about the MinimalLib is available directly from the source . The existence of this MinimalLib CFFI interface meant that we no longer had an excuse to not give it a go! First, we added a BinaryBuilder recipe for building RDKit's MinimalLib into Julia's Yggdrasil repository (thanks Mosè for reviewing!). The recipe builds and automatically uploads the library to Julia's general package registry. The build currently targe

New Drug Warnings Browser

As mentioned in the announcement post of  ChEMBL 29 , a new Drug Warnings Browser has been created. This is an updated version of the entity browsers in ChEMBL ( Compounds , Targets , Activities , etc). It contains new features that will be tried out with the Drug Warnings and will be applied to the other entities gradually. The new features of the Drug Warnings Browser are described below. More visible buttons to link to other entities This functionality is already available in the old entity browsers, but the button to use it is not easily recognised. In the new version, the buttons are more visible. By using those buttons, users can see the related activities, compounds, drugs, mechanisms of action and drug indications to the drug warnings selected. The page will take users to the corresponding entity browser with the items related to the ones selected, or to all the items in the dataset if the user didn’t select any. Additionally, the process of creating the join query is no