Skip to main content

UniChem Released

For data managers of chemistry resources, the maintenance of structure-based links to other chemistry resources can be a tedious chore. The job is all the more burdensome knowing that your counterparts in other chemistry based-resources are essentially duplicating your efforts, in order to keep their links to your resource updated.

In an attempt to remove this duplication of effort, and automate the processes involved, we have developed UniChem,  and which is described in a recent publication.

Getting structure-based links out of UniChem can be achieved either via the web-interface or the web services. For automated updating, using the web-services is often the best choice. The current set of web service methods has been designed to allow users several options for how they might obtain links data. Below are detailed two possibilities.

One such option would be to use the following methods: First, query UniChem for all valid src_id’s using the ‘GetSrcIds’ method. Then, iterate through this list and retrieve, using the ‘GetSourceInfo‘ method, all the details of these sources that you require (eg: the ‘base-url’ for constructing links). Lastly, iterate through the src_id list once more, this time retrieving all the mappings from your source to each of the other sources, using the ‘GetMapping’ method. Combining the results of the second and third queries can provide you with all the mappings from your compound identifiers to the URLs for the compounds in the other sources. These data can be stored locally, and queried and incorporated into a compound page when required. Periodic refreshes of these local tables by repeating the above process would be required to pick up UniChem updates.

Alternatively, you may wish to create links more dynamically, using, for example, the ‘GetVerboseSrcCpdIdsFromInchiKey’ method. Using this method, compound web pages may be populated with all links as the page is requested, after querying UniChem on the fly with the InChIKey. Returned from this single query is a list of sources which contain valid compound links. For each of the sources, a keyed list describes information such as the ‘base-url’, etc. One of the keys (‘src-compound_id’) maps to an array of src-compound_ids. Combining the ‘base-url’ with each of the src_compound_ids gives the required links. See the example of this method in the link immediately above.


Popular posts from this blog

A python client for accessing ChEMBL web services

Motivation The CheMBL Web Services provide simple reliable programmatic access to the data stored in ChEMBL database. RESTful API approaches are quite easy to master in most languages but still require writing a few lines of code. Additionally, it can be a challenging task to write a nontrivial application using REST without any examples. These factors were the motivation for us to write a small client library for accessing web services from Python. Why Python? We choose this language because Python has become extremely popular (and still growing in use) in scientific applications; there are several Open Source chemical toolkits available in this language, and so the wealth of ChEMBL resources and functionality of those toolkits can be easily combined. Moreover, Python is a very web-friendly language and we wanted to show how easy complex resource acquisition can be expressed in Python. Reinventing the wheel? There are already some libraries providing access to ChEMBL d

ChEMBL 29 Released

  We are pleased to announce the release of ChEMBL 29. This version of the database, prepared on 01/07/2021 contains: 2,703,543 compound records 2,105,464 compounds (of which 2,084,724 have mol files) 18,635,916 activities 1,383,553 assays 14,554 targets 81,544 documents Data can be downloaded from the ChEMBL FTP site: .  Please see ChEMBL_29 release notes for full details of all changes in this release: New Deposited Datasets EUbOPEN Chemogenomic Library (src_id = 55, ChEMBL Document IDs CHEMBL4649982-CHEMBL4649998): The EUbOPEN consortium is an Innovative Medicines Initiative (IMI) funded project to enable and unlock biology in the open. The aims of the project are to assemble an open access chemogenomic library comprising about 5,000 well annotated compounds covering roughly 1,000 different proteins, to synthesiz

Julia meets RDKit

Julia is a young programming language that is getting some traction in the scientific community. It is a dynamically typed, memory safe and high performance JIT compiled language that was designed to replace languages such as Matlab, R and Python. We've been keeping an an eye on it for a while but we were missing something... yes, RDKit! Fortunately, Greg very recently added the MinimalLib CFFI interface to the RDKit repertoire. This is nothing else than a C API that makes it very easy to call RDKit from almost any programming language. More information about the MinimalLib is available directly from the source . The existence of this MinimalLib CFFI interface meant that we no longer had an excuse to not give it a go! First, we added a BinaryBuilder recipe for building RDKit's MinimalLib into Julia's Yggdrasil repository (thanks Mosè for reviewing!). The recipe builds and automatically uploads the library to Julia's general package registry. The build currently targe

Identifying relevant compounds in patents

  As you may know, patents can be inherently noisy documents which can make it challenging to extract drug discovery information from them, such as the key targets or compounds being claimed. There are many reasons for this, ranging from deliberate obfuscation through to the long and detailed nature of the documents. For example, a typical small molecule patent may contain extensive background information relating to the target biology and disease area, chemical synthesis information, biological assay protocols and pharmacological measurements (which may refer to endogenous substances, existing therapies, reaction intermediates, reagents and reference compounds), in addition to description of the claimed compounds themselves.  The SureChEMBL system extracts this chemical information from patent documents through recognition of chemical names, conversion of images and extraction of attached files, and allows patents to be searched for chemical structures of interest. However, the curren

New Drug Warnings Browser

As mentioned in the announcement post of  ChEMBL 29 , a new Drug Warnings Browser has been created. This is an updated version of the entity browsers in ChEMBL ( Compounds , Targets , Activities , etc). It contains new features that will be tried out with the Drug Warnings and will be applied to the other entities gradually. The new features of the Drug Warnings Browser are described below. More visible buttons to link to other entities This functionality is already available in the old entity browsers, but the button to use it is not easily recognised. In the new version, the buttons are more visible. By using those buttons, users can see the related activities, compounds, drugs, mechanisms of action and drug indications to the drug warnings selected. The page will take users to the corresponding entity browser with the items related to the ones selected, or to all the items in the dataset if the user didn’t select any. Additionally, the process of creating the join query is no