Skip to main content

New Drug Approvals 2012 - Pt. XXXV - Elvitegravir/Cobicistat/Emtricitabine/Tenofovir disoproxil fumerate (STRIBILD®)


Elvitegravir:

Cobicistat:


ATC Code : J05AR09
On August 27, FDA approved the complete regimen for treatment of Human Immunodeficiency Virus -1 (HIV-1) infection in adults who are antiretroviral treatment-naïve. STRIBILD®, combination of a HIV-1 integrase strand transfer inhibitor (INSTI) - Elvitegravir, a pharmacokinetic enhancer - Cobicistat and two nucleos(t)ide analog HIV-1 Reverse Transcriptase (RT) inhibitors (NRTI's) - Emtricitabine/Tenofovir disoproxil.

Acquired immunodeficiency syndrome (AIDS) is a disease of the human immune system caused by HIV infection, in which progressive failure of the immune system allows life-threatening opportunistic infections and cancers to thrive. HIV infects and kills vital cells involved in immune system such as T helper cells (specifically CD4+ T cells, macrophages and dendritic cells. When CD4+ T cell numbers decile below a critical level, cell-mediated immunity is lost and the body becomes progressively more susceptible to opportunistic infections.

HIV/AIDS is a global pandemic. As of 2012 approximately 34 million people have HIV worldwide. Of these approximately 16.8 million are women and 3.4 million are less than 15 years old. For more information on the disease epidemiology or any other information on HIV/AIDS, check Wikipedia or UNAIDS.


The management of HIV/AIDS typically includes the use of antiretroviral drugs which are medications for the treatment of infection of HIV. Different antiretroviral drugs restrain the growth and reproduction of HIV, that are broadly classified by the phase of the retrovirus life-cycle that the drug inhibits.


The life-cycle of HIV (all steps 1 to 6) can be as short as about 1.5 days and HIV lacks proofreading enzymes. These cause the virus to mutate very rapidly, resulting in high genetic variability. When antiretroviral drugs are used improperly, these multi-drug resistant (MDR) strains can become dominant genotypes. This lead to development of combination therapy - wherein several drugs (different classes of antiretroviral drugs), typically three or four, are taken in combination, the approach is known as highly active antiretroviral therapy (HAART). 


In recent years, many such complex regimens has been developed and termed as fixed-dose combinations. Some other examples of fixed-dose combination drugs approved by FDA for HIV treatment can be found here. And one such combination drug is STRIBILD®; which is a fixed-dose combination of ElvitegravirCobicistatEmtricitabine and Tenofovir DF. Elvitegravir, emtricitabine and tenofovir directly suppress viral reproduction. Cobicistat increases the effectiveness of the combination by inhibiting liver enzymes that metabolise the other components. In this regimen of drugs Elvitegravir and Cobicistat are the new molecular entities (NME), the rest two emtricitabine (prescribing info.) and tenofovir (prescribing info.) are pre-approved, prescribed NRTI drugs.

Elvitegravir (Research Code: GS1937, ChEMBLCHEMBL204656PubChemCID 5277135ChemSpider4441060 ) inhibits the strand transfer activity of HIV-1 integrase, an HIV-1 encoded enzyme that is required for viral replication. Inhibition of integrase prevents the integration of HIV-1 DNA into host genomic DNA, blocking the formation of the HIV-1 provirus and propagation of the viral infection. Elvitegravir does not inhibit human Topoisomerases I or II.

IUPAC Name : 6-(3-Chloro-2-fluorobenzyl)-1-[(2S)-1-hydroxy-3-methylbutan-2-yl]-7-methoxy-4-oxo-1,4-dihydroquinoline-3-carboxylic acid
Canonical SMILES : COc1cc2N(C=C(C(=O)O)C(=O)c2cc1Cc3cccc(Cl)c3F)[C@H](CO)C(C)C
Standard InChI : 1S/C23H23ClFNO5/c1-12(2)19(11-27)26-10-16(23(29)30)22(28)15-8-14(20(31-3)9-18(15)26)7-13-5-4-6-17(24)21(13)25/h4-6,8-10,12,19,27H,7,11H2,1-3H3,(H,29,30)/t19-/m1/s1
Standard InChI Key : JUZYLCPPVHEVSV-LJQANCHMSA-N

Cobicistat (PubChemCID 25151504ChemSpider25084912) is a selective, mechanism-based inhibitor of cytochromes P450 of the CYP3A subfamily. Inhibition of CYP3A-mediated metabolism by cobicistat enhances the systemic exposure of CYP3A substrates, such as elvitegravir, where bioavailability is limited and half-life is shortened by CYP3A-dependent metabolism.



IUPAC Name : 1,3-thiazol-5-ylmethyl [(2R,5R)-5-{[(2S)-2-[(methyl{[2-(propan-2-yl)-1,3-thiazol-4-yl]methyl}carbamoyl)amino]-4-(morpholin-4-yl)butanoyl]amino}-1,6-diphenylhexan-2-yl]carbamate
Canonical SMILES : CC(C)c1nc(CN(C)C(=O)N[C@@H](CCN2CCOCC2)C(=O)N[C@H](CC[C@H](Cc3ccccc3)NC(=O)OCc4cncs4)Cc5ccccc5)cs1
Standard InChI : 1S/C40H53N7O5S2/c1-29(2)38-43-34(27-53-38)25-46(3)39(49)45-36(16-17-47-18-20-51-21-19-47)37(48)42-32(22-30-10-6-4-7-11-30)14-15-33(23-31-12-8-5-9-13-31)44-40(50)52-26-35-24-41-28-54-35/h4-13,24,27-29,32-33,36H,14-23,25-26H2,1-3H3,(H,42,48)(H,44,50)(H,45,49)/t32-,33-,36+/m1/s1

The recommended dose of STRIBILD is one tablet administered orally once a day, which contains 150 mg of elvitegravir, 150 mg of cobicistat, 200 mg of emtricitabine, and 300 mg of tenofovir disoproxil fumarate. Peak plasma concentrations were observed 4 hrs post-dose for elvitegravir with Cmax of 1.7 ± 0.4, 3 hrs for cobicistat with Cmax of 1.1 ± 0.4. Almost 98-99% of elvitegravir bound to human plasma, whereas cobicistat was 97-98% bound. Median terminal plasma half-life of 12.9 for elvitegravir was found with 94.8% and 6.7% of the administered dose excreted in feces and urine respectively. Cobicistat exhibited 3.5 hrs of plasma half-life with 86.2% and 8.2% of the administered dose excreted in feces and urine.

Full prescribing information can be found here.

The license holder is GILEAD, and the product website is www.stribild.com.

Comments

Popular posts from this blog

Improvements in SureChEMBL's chemistry search and adoption of RDKit

    Dear SureChEMBL users, If you frequently rely on our "chemistry search" feature, today brings great news! We’ve recently implemented a major update that makes your search experience faster than ever. What's New? Last week, we upgraded our structure search engine by aligning it with the core code base used in ChEMBL . This update allows SureChEMBL to leverage our FPSim2 Python package , returning results in approximately one second. The similarity search relies on 256-bit RDKit -calculated ECFP4 fingerprints, and a single instance requires approximately 1 GB of RAM to run. SureChEMBL’s FPSim2 file is not currently available for download, but we are considering generating it periodicaly and have created it once for you to try in Google Colab ! For substructure searches, we now also use an RDKit -based solution via SubstructLibrary , which returns results several times faster than our previous implementation. Additionally, structure search results are now sorted by

Improved querying for SureChEMBL

    Dear SureChEMBL users, Earlier this year we ran a survey to identify what you, the users, would like to see next in SureChEMBL. Thank you for offering your feedback! This gave us the opportunity to have some interesting discussions both internally and externally. While we can't publicly reveal precisely our plans for the coming months (everything will be delivered at the right time), we can at least say that improving the compound structure extraction quality is a priority. Unfortunately, the change won't happen overnight as reprocessing 167 millions patents takes a while. However, the good news is that the new generation of optical chemical structure recognition shows good performance, even for patent images! We hope we can share our results with you soon. So in the meantime, what are we doing? You may have noticed a few changes on the SureChEMBL main page. No more "Beta" flag since we consider the system to be stable enough (it does not mean that you will never

ChEMBL brings drug bioactivity data to the Protein Data Bank in Europe

In the quest to develop new drugs, understanding the 3D structure of molecules is crucial. Resources like the Protein Data Bank in Europe (PDBe) and the Cambridge Structural Database (CSD) provide these 3D blueprints for many biological molecules. However, researchers also need to know how these molecules interact with their biological target – their bioactivity. ChEMBL is a treasure trove of bioactivity data for countless drug-like molecules. It tells us how strongly a molecule binds to a target, how it affects a biological process, and even how it might be metabolized. But here's the catch: while ChEMBL provides extensive information on a molecule's activity and cross references to other data sources, it doesn't always tell us if a 3D structure is available for a specific drug-target complex. This can be a roadblock for researchers who need that structural information to design effective drugs. Therefore, connecting ChEMBL data with resources like PDBe and CSD is essen

ChEMBL 34 is out!

We are delighted to announce the release of ChEMBL 34, which includes a full update to drug and clinical candidate drug data. This version of the database, prepared on 28/03/2024 contains:         2,431,025 compounds (of which 2,409,270 have mol files)         3,106,257 compound records (non-unique compounds)         20,772,701 activities         1,644,390 assays         15,598 targets         89,892 documents Data can be downloaded from the ChEMBL FTP site:  https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_34/ Please see ChEMBL_34 release notes for full details of all changes in this release:  https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_34/chembl_34_release_notes.txt New Data Sources European Medicines Agency (src_id = 66): European Medicines Agency's data correspond to EMA drugs prior to 20 January 2023 (excluding vaccines). 71 out of the 882 newly added EMA drugs are only authorised by EMA, rather than from other regulatory bodies e.g.

In search of the perfect assay description

Credit: Science biotech, CC BY-SA 4.0 Assays des cribe the experimental set-up when testing the activity of drug-like compounds against biological targets; they provide useful context for researchers interested in drug-target relationships. Ver sion 33 of ChEMBL contains 1.6 million diverse assays spanning ADMET, physicochemical, binding, functional and toxicity experiments. A set of well-defined and structured assay descriptions would be valuable for the drug discovery community, particularly for text mining and NLP projects. These would also support ChEMBL's ongoing efforts towards an  in vitro  assay classification. This Blog post will consider the features of the 'perfect' assay description and provide a guide for depositors on the submission of high quality data. ChEMBL's assays are typically structured with the overall aim, target, and method .  The ideal assay description is succinct but contains all the necessary information for easy interpretation by database u